69 resultados para NERVE BLOCK
Resumo:
Objective: To investigate the validity of the Trendelenburg test (TT) using an ultrasound-guided nerve block (UNB) of the superior gluteal nerve and determine whether the reduction in hip abductor muscle (HABD) strength would result in the theorized mechanical compensatory strategies measured during the TT. Design: Quasi-experimental. Setting: Hospital. Participants: Convenience sample of 9 healthy men. Only participants with no current or previous injury to the lumbar spine, pelvis, or lower extremities, and no previous surgeries were included. Interventions: Ultrasound-guided nerve block. Main Outcome Measures: Hip abductor muscle strength (percent body weight [%BW]), contralateral pelvic drop (cPD), change in contralateral pelvic drop (Delta cPD), ipsilateral hip adduction, and ipsilateral trunk sway (TRUNK) measured in degrees. Results: The median age and weight of the participants were 31 years (interquartile range [IQR], 22-32 years) and 73 kg (IQR, 67-81 kg), respectively. An average 52% reduction of HABD strength (z = 2.36, P = 0.02) resulted after the UNB. No differences were found in cPD or Delta cPD (z = 0.01, P = 0.99, z = 20.67, P = 0.49, respectively). Individual changes in biomechanics showed no consistency between participants and nonsystematic changes across the group. One participant demonstrated the mechanical compensations described by Trendelenburg. Conclusions: The TT should not be used as a screening measure for HABD strength in populations demonstrating strength greater than 30% BW but should be reserved for use with populations with marked HABD weakness. Clinical Relevance: This study presents data regarding a critical level of HABD strength required to support the pelvis during the TT.
Resumo:
Introduction: The Trendelenburg Test (TT) is used to assess the functional strength of the hip abductor muscles (HABD), their ability to control frontal plane motion of the pelvis, and the ability of the lumbopelvic complex to transfer load into single leg stance. Rationale: Although a standard method to perform the test has been described for use within clinical populations, no study has directly investigated Trendelenburg’s hypotheses. Purpose: To investigate the validity of the TT using an ultrasound guided nerve block (UNB) of the superior gluteal nerve and determine whether the reduction in HABD strength would result in the theorized mechanical compensatory strategies measured during the TT. Methods: Quasi-experimental design using a convenience sample of nine healthy males. Only subjects with no current or previous injury to the lumbar spine, pelvis, or lower extremities, and no previous surgeries were included. Force dynamometry was used to evaluation HABD strength (%BW). 2D mechanics were used to evaluate contralateral pelvic drop (cMPD), change in contralateral pelvic drop (∆cMPD), ipsilateral hip adduction (iHADD) and ipsilateral trunk sway (TRUNK) measured in degrees (°). All measures were collected prior to and following a UNB on the superior gluteal nerve performed by an interventional radiologist. Results: Subjects’ age was median 31yrs (IQR:22-32yrs); and weight was median 73kg (IQR:67-81kg). An average 52% reduction of HABD strength (z=2.36,p=0.02) resulted following the UNB. No differences were found in cMPD or ∆cMPD (z=0.01,p= 0.99, z=-0.67,p=0.49). Individual changes in biomechanics show no consistency between subjects and non-systematic changes across the group. One subject demonstrated the mechanical compensations described by Trendelenburg. Discussion: The TT should not be used as screening measure for HABD strength in populations demonstrating strength greater than 30%BW but reserved for use with populations with marked HABD weakness. Importance: This study presents data regarding a critical level of HABD strength required to support the pelvis during the TT.
Resumo:
Researchers have postulated that reduced hip-abductor muscle strength may have a role in the progression of knee osteoarthritis by increasing the external knee-adduction moment. However, the relationship between hip-abductor strength and frontal-plane biomechanics remains unclear. To experimentally reduce hip-abduction strength and observe the subsequent changes in frontal-plane biomechanics. Descriptive laboratory study. Research laboratory. Eight healthy, recreationally active men (age = 27 ± 6 years, height = 1.75 ± 0.11 m, mass = 76.1 ± 10.0 kg). All participants underwent a superior gluteal nerve block injection to reduce the force output of the hip-abductor muscle group. Maximal isometric hip-abduction strength and gait biomechanical data were collected before and after the injections. Gait biomechanical variables collected during walking consisted of knee- and hip-adduction moments and impulses and the peak angles of contralateral pelvic drop, hip adduction, and ipsilateral trunk lean. Hip-abduction strength was reduced after the injection (P = .001) and remained lower than baseline values at the completion of the postinjection gait data collection (P = .02). No alterations in hip- or knee-adduction moments (hip: P = .11; knee: P = .52) or impulses (hip: P = .16; knee: P = .41) were found after the nerve block. Similarly, no changes in angular kinematics were observed for contralateral pelvic drop (P = .53), ipsilateral trunk lean (P = .78), or hip adduction (P = .48). A short-term reduction in hip-abductor strength was not associated with alterations in the frontal-plane gait biomechanics of young, healthy men. Further research is needed to determine whether a similar relationship is true in older adults with knee osteoarthritis.
Resumo:
Purpose To evaluate if adding clonidine to a standard nerve root block containing local anaesthetic and steroid improved the outcome of patients with severe lumbar nerve root pain secondary to MRI proven lumbar disc prolapse. Methods We undertook a single blind, prospective, randomised controlled trial evaluating 100 consecutive patients with nerve root pain secondary to lumbar disc prolapse undergoing trans-foraminal epidural steroid injection either with or without the addition of clonidine. 50 patients were allocated to each arm of the study. The primary outcome measure was the avoidance of a second procedure- repeat injection or micro-discectomy surgery. Secondary outcome measures were also studied: pain scores for leg and back pain using a visual analogue scale (VAS), the Roland Morris Disability Questionnaire (RMDQ) and the Measure Your Own Medical Outcome Profile (MYMOP). Follow up was carried out at 6 weeks, 6 months and 1 year. Results No serious complications occurred. Of the 50 patients who received the addition of clonidine, 56% were classified as successful injections, with no further intervention required, as opposed to 40% who received the standard injection. This difference did not reach statistical significance (p=0.109, chi-squared test). All secondary measures showed no statistically significant differences between the groups except curiously, the standard group who had been classified as successful had better leg pain relief than the clonidine group (p=0.026) at 1 year. Conclusions This pilot study has shown a 16% treatment effect with adding clonidine to lumbar nerve root blocks and that it is a safe injectate for this purpose.
Resumo:
Purpose: To determine the subbasal nerve density and tortuosity at 5 corneal locations and to investigate whether these microstructural observations correlate with corneal sensitivity. Method: Sixty eyes of 60 normal human subjects were recruited into 1 of 3 age groups, group 1: aged ,35 years, group 2: aged 35–50 years, and group 3: aged .50 years. All eyes were examined using slit-lamp biomicroscopy, noncontact corneal esthesiometry, and slit scanning in vivo confocal microscopy. Results: The mean subbasal nerve density and the mean corneal sensitivity were greatest centrally (14,731 6 6056 mm/mm2 and 0.38 6 0.21 millibars, respectively) and lowest in the nasal mid periphery (7850 6 4947 mm/mm2 and 0.49 6 0.25 millibars, respectively). The mean subbasal nerve tortuosity coefficient was greatest in the temporal mid periphery (27.3 6 6.4) and lowest in the superior mid periphery (19.3 6 14.1). There was no significant difference in mean total subbasal nerve density between age groups. However, corneal sensation (P = 0.001) and subbasal nerve tortuosity (P = 0.004) demonstrated significant differences between age groups. Subbasal nerve density only showed significant correlations with corneal sensitivity threshold in the temporal cornea and with subbasal nerve tortuosity in the inferior and nasal cornea. However, these correlations were weak. Conclusions: This study quantitatively analyzes living human corneal nerve structure and an aspect of nerve function. There is no strong correlation between subbasal nerve density and corneal sensation. This study provides useful baseline data for the normal living human cornea at central and mid-peripheral locations
Resumo:
This paper presents a novel matched rotation precoding (MRP) scheme to design a rate one space-frequency block code (SFBC) and a multirate SFBC for MIMO-OFDM systems with limited feedback. The proposed rate one MRP and multirate MRP can always achieve full transmit diversity and optimal system performance for arbitrary number of antennas, subcarrier intervals, and subcarrier groupings, with limited channel knowledge required by the transmit antennas. The optimization process of the rate one MRP is simple and easily visualized so that the optimal rotation angle can be derived explicitly, or even intuitively for some cases. The multirate MRP has a complex optimization process, but it has a better spectral efficiency and provides a relatively smooth balance between system performance and transmission rate. Simulations show that the proposed SFBC with MRP can overcome the diversity loss for specific propagation scenarios, always improve the system performance, and demonstrate flexible performance with large performance gain. Therefore the proposed SFBCs with MRP demonstrate flexibility and feasibility so that it is more suitable for a practical MIMO-OFDM system with dynamic parameters.
Resumo:
This article focuses on the social interactions of several boys aged 3-5 years in the block area of a preschool classroom in a childcare setting. Using transcripts of video segments showing these boys engaged in daily play and interactions, the article analyses two episodes that occurred in the first weeks of the school year. At first glance, both episodes appear chaotic, with little appearance of order among the players. A closer analysis reveals a finely organized play taking place, with older boys teaching important lessons to the newcomers about how to be masculine in the block area. These episodes illustrate that masculinity is not a fixed character trait, but is determined through practice and participation in the activities of masculinity. Play and conflict are the avenues through which this occurs.
Resumo:
This thesis is devoted to the study of linear relationships in symmetric block ciphers. A block cipher is designed so that the ciphertext is produced as a nonlinear function of the plaintext and secret master key. However, linear relationships within the cipher can still exist if the texts and components of the cipher are manipulated in a number of ways, as shown in this thesis. There are four main contributions of this thesis. The first contribution is the extension of the applicability of integral attacks from word-based to bitbased block ciphers. Integral attacks exploit the linear relationship between texts at intermediate stages of encryption. This relationship can be used to recover subkey bits in a key recovery attack. In principle, integral attacks can be applied to bit-based block ciphers. However, specific tools to define the attack on these ciphers are not available. This problem is addressed in this thesis by introducing a refined set of notations to describe the attack. The bit patternbased integral attack is successfully demonstrated on reduced-round variants of the block ciphers Noekeon, Present and Serpent. The second contribution is the discovery of a very small system of equations that describe the LEX-AES stream cipher. LEX-AES is based heavily on the 128-bit-key (16-byte) Advanced Encryption Standard (AES) block cipher. In one instance, the system contains 21 equations and 17 unknown bytes. This is very close to the upper limit for an exhaustive key search, which is 16 bytes. One only needs to acquire 36 bytes of keystream to generate the equations. Therefore, the security of this cipher depends on the difficulty of solving this small system of equations. The third contribution is the proposal of an alternative method to measure diffusion in the linear transformation of Substitution-Permutation-Network (SPN) block ciphers. Currently, the branch number is widely used for this purpose. It is useful for estimating the possible success of differential and linear attacks on a particular SPN cipher. However, the measure does not give information on the number of input bits that are left unchanged by the transformation when producing the output bits. The new measure introduced in this thesis is intended to complement the current branch number technique. The measure is based on fixed points and simple linear relationships between the input and output words of the linear transformation. The measure represents the average fraction of input words to a linear diffusion transformation that are not effectively changed by the transformation. This measure is applied to the block ciphers AES, ARIA, Serpent and Present. It is shown that except for Serpent, the linear transformations used in the block ciphers examined do not behave as expected for a random linear transformation. The fourth contribution is the identification of linear paths in the nonlinear round function of the SMS4 block cipher. The SMS4 block cipher is used as a standard in the Chinese Wireless LAN Wired Authentication and Privacy Infrastructure (WAPI) and hence, the round function should exhibit a high level of nonlinearity. However, the findings in this thesis on the existence of linear relationships show that this is not the case. It is shown that in some exceptional cases, the first four rounds of SMS4 are effectively linear. In these cases, the effective number of rounds for SMS4 is reduced by four, from 32 to 28. The findings raise questions about the security provided by SMS4, and might provide clues on the existence of a flaw in the design of the cipher.
Resumo:
Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.
Resumo:
The concept of moving block signallings (MBS) has been adopted in a few mass transit railway systems. When a dense queue of trains begins to move from a complete stop, the trains can re-start in very close succession under MBS. The feeding substations nearby are likely to be overloaded and the service will inevitably be disturbed unless substations of higher power rating are used. By introducing starting time delays among the trains or limiting the trains’ acceleration rate to a certain extent, the peak energy demand can be contained. However, delay is introduced and quality of service is degraded. An expert system approach is presented to provide a supervisory tool for the operators. As the knowledge base is vital for the quality of decisions to be made, the study focuses on its formulation with a balance between delay and peak power demand.
Resumo:
Signalling layout design is one of the keys to railway operations with fixed-block signalling system and it also carries direct effect on overall train efficiency and safety. Based on an analysis to system objectives, this paper presents an optimization model with two objectives in order to devise an efficient signalling layout scheme. Taking into account the present railway line design practices in China, the paper describes steps of the computer-based signalling layout optimisation with real-coded genetic algorithms. A computer-aided system, based on train movement simulator, has also been employed to assist the optimisation process. A case study on a practical railway line has been conducted to make comparisons between the proposed GA-based approach and the current practices. The results illustrate the improved performance of the proposed approach in reducing signal block joints and shortening minimum train service headway.