54 resultados para Muscular dystrophy
Resumo:
Heart failure is a complex disorder, characterized by activation of the sympathetic nervous system, leading to dysregulated Ca2+ homeostasis in cardiac myocytes and tissue remodeling. In a variety of diseases, cardiac malfunction is associated with aberrant fluxes of Ca2+ across both the surface membrane and the internal Ca2+ store, the sarcoplasmic reticulum (SR). One prominent hypothesis residues is that in heart failure, the activity of the ryanodine receptor (RyR2) Ca2+ release channel in the SR is increased due to excess phosphorylation and that this contributes to excess SR Ca2+ leak in diastole, reduced SR Ca2+ load and decreased contractility (Huke & Bers, 2008). There is controversy over which serine residues in RyR2 are hyperphosphorylated in animal models of heart failure and whether this is via the CaMKII or the PKA-linked signaling pathway. S2808, S2814 and S2030 in RyR2 have been variously claimed to be hyperphosphorylated. Our aim was to examine the degree of phosphorylation of these residues in RyR2 from failing human hearts. The use of human tissue was approved by the Human Research Ethics Committee, The Prince Charles Hospital, EC28114. Left ventricular tissue samples were obtained from an explanted heart of a patient with endstage heart failure (Emery Dreifuss Muscular Dystrophy with cardiomyopathy) and non-failing tissue was from a patient with cystic fibrosis undergoing heart-lung transplantation with no history of heart disease. SR vesicles were prepared as described by Laver et al. (1995) and examined with SDS-Page and Western Blot. Transferred proteins were probed with antibodies to detect total protein phosphorylation, phosphorylation of RyR2 serine residues S2808, S2814, S2030 and for the key proteins calsequestrin, triadin, junctin and FKBP12.6. To avoid membrane stripping artifact, each membrane was exposed to one phosphorylation-specific antibody and signal densities quantified using Bio-Rad Quantity One software. We found no distinguishable difference between failing and healthy hearts in the protein expression levels of RyR2, triadin, junctin or calsequestrin. We found an expected upregulation of total RyR2 phosphorylation in the failing heart sample, compared to a matched amount of RyR2 (quantified using densiometry) in healthy heart. Probing with antibodies detecting only the phosphorylated form of the specific RyR2 residues showed that the increase in total RyR2 phosphorylation in the failing heart was due to hyperphosphorylation of S2808 and S2814. We found that S2030 phosphorylation levels were unchanged in human heart failure. Interestingly, we found that S2030 has a basal level of phosphorylation in the healthy human heart, different from the absence of basal phosphorylation recently reported in rodent heart (Huke & Bers, 2008). Finally, preliminary results indicate that less FKBP 12.6 is associated with RyR2 in the failing heart, possibly as a consequence of PKA activation. In conclusion, residues S2808 and S2814 are hyperphosphorylated in human heart failure, presumably due to upregulation of the CaMKII and/or PKA signaling pathway as a result of chronic activation of the sympathetic nervous system. Such changes in RyR2 phosphorylation are believed to contribute to the leaky RyR2 phenotype associated with heart failure, which increases the incidence of arrhythmia and contributes to the severely impaired contractile performance of the failing heart. Huke S & Bers DM. (2008). Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochemical and Biophysical Research Communications 376, 80-85. Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR & Dulhunty AF. (1995). Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. Journal of Membrane Biology 147, 7-22. Proceedings
Resumo:
Despite considerable discussion regarding the virtues of participation in urban spaces, the urban experience of children with disabilities has been largely ignored. This intensive study reported on the everyday experience of urban participation on the part of children with conditions such as cerebral palsy, muscular dystrophy, and juvenile arthritis, contributing new insights into their experience of journeys central to becoming involved in settings such as schools, neighbourhoods and shopping centres. The study identified problems in body – space – context relationships as points of intervention in our urban settings that promise to make a significant difference to their everyday journeys.
Resumo:
This chapter reports on a study that reveals the essence of participation in urban spaces by ten children who live with various physical conditions: Muscular Dystrophy, Cerebral Palsy, and Autoimmune Rheumatic Diseases. These conditions affect muscle and movement differently resulting in diverse ways in which children move through space (personal mobility). The children at the time of the research were 9-12 years of age residing in South-east Queensland, Australia. The approach and methods selected for this study, interpretive phenomenological inquiry and grounded theory, were chosen for their capacity to capture the complexity and multiple interactions of the child’s urban living. The confronting and poignant accounts by children and their families of their experiences produced a new way of understanding the concept of participation, as a ‘journey of becoming involved.’ Their accounts of performing everyday routines (e.g. leaving home, getting in and out of the car, and entering places) in urban spaces (neighbourhood streets, schools, open spaces, shopping centres, and hospitals) revealed differences in the way settings were experienced. These differences were associated with the interplay between the body, space and context. Where interplays were problematic, explicit decisions about children’s involvement were made. These decisions were described in terms of ‘avoid going’, ‘pick and choose’, ‘discontinue’, ‘accept’, or ‘contest.’ What these decisions mean is some spaces are avoided, some journeys are discontinued, and some barriers encountered in journeys are normalised as everyday experiences, i.e. ‘tolerable discrimination’. These actions resulted in experiences of non-participation or partial–tokenistic participation. The key substantive contribution of the research lies in the identification of points in children’s journeys that shape participation experience. These points identify where future interventions in policy, programming and design can be made to make real and sustaining changes to lives of children and their families in geographies crucial to urban living.
Resumo:
Participation is a word frequently espoused in the literature of childhood and urban studies. It has also been made sacrosanct through the Convention on the Rights of the Child and other rights-based policy and programming. Despite this importance, what it means and how it is experienced in the everyday lives of children with diverse abilities is not well understood. This chapter provides insight into the everyday experiences of participation by ten children 9-12 years of age, who have diverse personal mobility from various physical conditions that affect muscle and movement differently, including: Muscular Dystrophy, Cerebral Palsy, and Autoimmune Rheumatic Diseases. The children participants live in the outer suburbs and inner regions of south-east Queensland, Australia. The chapter discusses a new way of understanding and theorising participation as a journey of becoming involved. This knowledge emerged through the children’s body-space-time routines (body ballets) and their descriptions of inhabiting urban space. This chapter also establishes how body-space-context interplays shape the experiences of becoming and being involved in everyday life, as well as the preconceptions of body embed in space which divide and constrain children and families actualisation of full and genuine participation.
Resumo:
In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b). Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies. The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension. The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width. Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait. The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.
Resumo:
Background No study relating the changes obtained in the architecture of erector spinae (ES) muscle were registered with ultrasound and different intensities of muscle contraction recorded by surface EMG (electromyography) on the ES muscle was found. The aim of this study was analyse the relationship in the response of the ES muscle during isometric moderate and light lumbar isometric extension considering architecture and functional muscle variables. Methods Cross-sectional study. 46 subjects (52% men) with a group mean age of 30.4 (±7.78). The participants developed isometric lumbar extension while performing moderate and low isometric trunk and hip extension in a sitting position with hips flexed 90 degrees and the lumbar spine in neutral position. During these measurements, electromyography recordings and ultrasound images were taken bilaterally. Bilaterally pennation angle, muscle thickness, torque and muscle activation were measured. This study was developed at the human movement analysis laboratory of the Health Science Faculty of the University of Malaga (Spain). Results Strong and moderate correlations were found at moderate and low intensities contraction between the variable of the same intensity, with correlation values ranging from 0.726 (Torque Moderate – EMG Left Moderate) to 0.923 (Angle Left Light – Angle Right Light) (p < 0.001). This correlation is observed between the variables that describe the same intensity of contraction, showing a poor correlation between variables of different intensities. Conclusion There is a strong relationship between architecture and function variables of ES muscle when describe an isometric lumbar extension at light or moderate intensity. Keywords: Ultrasonography; Surface electromyography; Thickness; Pennation angle; Erector spinae
Resumo:
Objectives The purpose of the study was to establish regression equations that could be used to predict muscle thickness and pennation angle at different intensities from electromyography (EMG) based measures of muscle activation during isometric contractions. Design Cross-sectional study. Methods Simultaneous ultrasonography and EMG were used to measure pennation angle, muscle thickness and muscle activity of the rectus femoris and vastus lateralis muscles, respectively, during graded isometric knee extension contractions performed on a Cybex dynamometer. Data form fifteen male soccer players were collected in increments of approximately 25% intensity of the maximum voluntary contraction (MVC) ranging from rest to MVC. Results There was a significant correlation (P < 0.05) between ultrasound predictors and EMG measures for the muscle thickness of rectus femoris with an R2 value of 0.68. There was no significant correlation (P > 0.05) between ultrasound pennation angle for the vastus lateralis predictors for EMG muscle activity with an R2 value of 0.40. Conclusions The regression equations can be used to characterise muscle thickness more accurately and to determine how it changes with contraction intensity, this provides improved estimates of muscle force when using musculoskeletal models.
Resumo:
Maternally inherited diabetes and deafness (MIDD) is an autosomal dominant inherited syndrome caused by the mitochondrial DNA (mtDNA) nucleotide mutation A3243G. It affects various organs including the eye with external ophthalmoparesis, ptosis, and bilateral macular pattern dystrophy.1, 2 The prevalence of retinal involvement in MIDD is high, with 50% to 85% of patients exhibiting some macular changes.1 Those changes, however, can vary between patients and within families dramatically based on the percentage of retinal mtDNA mutations, making it difficult to give predictions on an individual’s visual prognosis...
Resumo:
A multiscale approach that bridges the biophysics of the actin molecules at nanoscale and the biomechanics of actin filament at microscale level is developed and used to evaluate the mechanical performances of actin filament bundles. In order to investigate the contractile properties of skeletal muscle which is induced by the protein motor of myosin, a molecular model is proposed in the prediction of the dynamic behaviors of skeletal muscle based on classic sliding filament model. Randomly distributed myosin motors are applied on a 2.2 μm long sarcomere, whose principal components include actin and myosin filaments. It can be found that, the more myosin motors on the sarcomere, the faster the sarcomere contracts. The result demonstrates that the sarcomere shortening speed cannot increase infinitely by the modulation of myosin, thus providing insight into the self-protective properties of skeletal muscles. This molecular filament sliding model provides a theoretical way to evaluate the properties of skeletal muscles, and contributes to the understandings of the molecular mechanisms in the physiological phenomenon of muscular contraction.
Resumo:
Objectives To assess the feasibility and efficacy of delivering Pilates exercises for resistance training to breast cancer survivors using the MVe Fitness Chair™. Design Pilot randomized controlled trial. Methods Twenty-six female breast cancer survivors were randomized to use the MVe Fitness Chair™ (n = 8), traditional resistance training (n = 8), or a control group (no exercise) (CO) (n = 10). The MVe Fitness Chair™ and traditional resistance training groups completed 8 weeks of exercise. Muscular endurance was assessed pre and post-test for comparisons within and between groups using push ups, curl ups, and the Dynamic Muscular Endurance Test Battery for Cancer Patients of Various Ages. Results Feasibility of the MVe Fitness Chair™ was good, evidenced by over 80% adherence for both exercise groups and positive narrative feedback. Significant improvements in muscular endurance were observed in the MVe Fitness Chair™ (p < 0.002) and traditional resistance training groups (p < 0.001), but there were no differences in improvement between the MVe Fitness Chair™ and traditional resistance training groups (p < 0.711) indicating that Pilates and traditional resistance training may be equally effective at improving muscular endurance in this population. Conclusions The MVe Fitness Chair™ is feasible for use in breast cancer survivors. It appears to promote similar improvements in muscular endurance when compared to traditional resistance training, but has several advantages over traditional resistance training, including cost, logistics, enjoyment, and ease of learning.
Resumo:
Ultra-endurance exercise, such as an Ironman triathlon, induces muscle damage and a systemic inflammatory response. As the resolution of recovery in these parameters is poorly documented, we investigated indices of muscle damage and systemic inflammation in response to an Ironman triathlon and monitored these parameters 19 days into recovery. Blood was sampled from 42 well-trained male triathletes 2 days before, immediately after, and 1, 5 and 19 days after an Ironman triathlon. Blood samples were analyzed for hematological profile, and plasma values of myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, cortisol, testosterone, creatine kinase (CK) activity, myoglobin, interleukin (IL)-6, IL-10 and high-sensitive C-reactive protein (hs-CRP). Immediately post-race there were significant (P < 0.001) increases in total leukocyte counts, MPO, PMN elastase, cortisol, CK activity, myoglobin, IL-6, IL-10 and hs-CRP, while testosterone significantly (P < 0.001) decreased compared to prerace. With the exception of cortisol, which decreased below prerace values (P < 0.001), these alterations persisted 1 day post-race (P < 0.001; P < 0.01 for IL-10). Five days post-race CK activity, myoglobin, IL-6 and hs-CRP had decreased, but were still significantly (P < 0.001) elevated. Nineteen days post-race most parameters had returned to prerace values, except for MPO and PMN elastase, which had both significantly (P < 0.001) decreased below prerace concentrations, and myoglobin and hs-CRP, which were slightly, but significantly higher than prerace. Furthermore, significant relationships between leukocyte dynamics, cortisol, markers of muscle damage, cytokines and hs-CRP after the Ironman triathlon were noted. This study indicates that the pronounced initial systemic inflammatory response induced by an Ironman triathlon declines rapidly. However, a low-grade systemic inflammation persisted until at least 5 days post-race, possibly reflecting incomplete muscle recovery.
Resumo:
Objective The aim of this systematic review and meta-analysis was to determine the overall effect of resistance training (RT) on measures of muscular strength in people with Parkinson’s disease (PD). Methods Controlled trials with parallel-group-design were identified from computerized literature searching and citation tracking performed until August 2014. Two reviewers independently screened for eligibility and assessed the quality of the studies using the Cochrane risk-of-bias-tool. For each study, mean differences (MD) or standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for continuous outcomes based on between-group comparisons using post-intervention data. Subgroup analysis was conducted based on differences in study design. Results Nine studies met the inclusion criteria; all had a moderate to high risk of bias. Pooled data showed that knee extension, knee flexion and leg press strength were significantly greater in PD patients who undertook RT compared to control groups with or without interventions. Subgroups were: RT vs. control-without-intervention, RT vs. control-with-intervention, RT-with-other-form-of-exercise vs. control-without-intervention, RT-with-other-form-of-exercise vs. control-with-intervention. Pooled subgroup analysis showed that RT combined with aerobic/balance/stretching exercise resulted in significantly greater knee extension, knee flexion and leg press strength compared with no-intervention. Compared to treadmill or balance exercise it resulted in greater knee flexion, but not knee extension or leg press strength. RT alone resulted in greater knee extension and flexion strength compared to stretching, but not in greater leg press strength compared to no-intervention. Discussion Overall, the current evidence suggests that exercise interventions that contain RT may be effective in improving muscular strength in people with PD compared with no exercise. However, depending on muscle group and/or training dose, RT may not be superior to other exercise types. Interventions which combine RT with other exercise may be most effective. Findings should be interpreted with caution due to the relatively high risk of bias of most studies.
Resumo:
Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.