235 resultados para Muscle pain
Resumo:
Objectives: To investigate the relationship between two assessments to quantify delayed onset muscle soreness [DOMS]: visual analog scale [VAS] and pressure pain threshold [PPT]. Methods: Thirty-one healthy young men [25.8 ± 5.5 years] performed 10 sets of six maximal eccentric contractions of the elbow flexors with their non-dominant arm. Before and one to four days after the exercise, muscle pain perceived upon palpation of the biceps brachii at three sites [5, 9 and 13 cm above the elbow crease] was assessed by VAS with a 100 mm line [0 = no pain, 100 = extremely painful], and PPT of the same sites was determined by an algometer. Changes in VAS and PPT over time were compared amongst three sites by a two-way repeated measures analysis of variance, and the relationship between VAS and PPT was analyzed using a Pearson product-moment correlation. Results: The VAS increased one to four days after exercise and peaked two days post-exercise, while the PPT decreased most one day post-exercise and remained below baseline for four days following exercise [p < 0.05]. No significant difference among the three sites was found for VAS [p = 0.62] or PPT [p = 0.45]. The magnitude of change in VAS did not significantly correlate with that of PPT [r = −0.20, p = 0.28]. Conclusion: These results suggest that the level of muscle pain is not region-specific, at least among the three sites investigated in the study, and VAS and PPT provide different information about DOMS, indicating that VAS and PPT represent different aspects of pain.
Resumo:
Purpose: To examine the relationship between hip abductor muscle (HABD) strength and the magnitude of pelvic drop (MPD) for patients with non-specific low back pain (NSLBP) and controls (CON) prior to and following a 3-week HABD strengthening protocol. At baseline, we hypothesized that NSLBP patients would exhibit reduced HABD strength and greater MPD compared to CON. Following the protocol, we hypothesized that strength would increase and MPD would decrease. Relevance: The Trendelenburg test (TT) is a common clinical test used to examine the ability of the HABD to maintain horizontal pelvic position during single limb stance. However, no study has specifically tested this theory. Moreover, no study has investigated the relationship between HABD strength and pelvic motion during walking or tested whether increased HABD strength would reduce the MPD. Methods: Quasi-experimental with 3-week exercise intervention. Fifteen NSLBP patients (32.5yrs,range 21-51yrs; VAS baseline: 5.3cm) and 10 CON (29.5yrs,range 22-47yrs) were recruited. Isometric HABD strength was measured using a force dynamometer and the average of three maximal voluntary contractions were normalized to body mass (N/kg). Two-dimensional MPD (degrees) was measured using a 60 Hz camera and was derived from two retroreflective-markers placed on the posterior superior iliac spines. MPD was measured while performing the static TT and while walking and averaged over 10 consecutive footfalls. NSLBP patients completed a 3-week HABD strengthening protocol consisting of 2 open-kinetic-chain exercises then all measures were repeated. Non-parametric analysis was used for group comparisons and correlation analysis. Results: At baseline, the NSLBP patients demonstrated 31% reduced HABD strength (mean=6.6 N/kg) compared to CON (mean=9.5 N/kg: p=0.03) and no significant differences in maximal pelvic frontal plane excursion while walking (NSLBP:mean=8.1°, CON:mean=7.1°: p=0.72). No significant correlations were measured between left HABD strength and right MPD (r=-0.37, p=0.11), or between right HABD strength and left MPD (r=-0.04, p=0.84) while performing the static TT. Following the 3-week strengthening protocol, NSLBP patients demonstrated a 12% improvement in strength (Post:mean=7.4 N/kg: p=0.02), a reduction in pain (VAS followup: 2.8cm), but no significant decreases in MPD while walking (p=0.92). Conclusions: NSLBP patients demonstrated reduced HABD strength at baseline and were able to increase strength and reduce pain in a 3-week period. However, despite increases in HABD strength, the NSLBP group exhibited similar MPD motion during the static TT and while walking compared to baseline and controls. Implications: The results suggest that the HABD alone may not be primarily responsible for controlling a horizontal pelvic position during static and dynamic conditions. Increasing the strength of the hip abductors resulted in a reduction of pain in NSLBP patients providing evidence for further research to identify specific musculature responsible for controlling pelvic motion.
Resumo:
This study determined differences between computer workers with varying levels of neck pain in terms of work stressors, employee strain, electromyography (EMG) amplitude and heart rate response to various tasks. Participants included 85 workers (33, no pain; 38, mild pain; 14, moderate pain) and 22 non-working controls. Work stressors evaluated were job demands, decision authority, and social support. Heart rate was recorded during three tasks: copy-typing, typing with superimposed stress and a colour word task. Measures included electromyography signals from the sternocleidomastoid (SCM), anterior scalene (AS), cervical extensor (CE) and upper trapezius (UT) muscles bilaterally. Results showed no difference between groups in work stressors or employee strain measures. Workers with and without pain had higher measured levels of EMG amplitude in SCM, AS and CE muscles during the tasks than controls (all P < 0.02). In workers with neck pain, the UT had difficulty in switching off on completion of tasks compared with controls and workers without pain. There was an increase in heart rate, perceived tension and pain and decrease in accuracy for all groups during the stressful tasks with symptomatic workers producing more typing errors than controls and workers without pain. These findings suggest an altered muscle recruitment pattern in the neck flexor and extensor muscles. Whether this is a consequence or source of the musculoskeletal disorder cannot be determined from this study. It is possible that workers currently without symptoms may be at risk of developing a musculoskeletal disorder.
Resumo:
Study Design Cross-sectional study. Objective To explore aspects of cervical musculoskeletal function in female office workers with neck pain. Summary of Background Data Evidence of physical characteristics that differentiate computer workers with and without neck pain is sparse. Patients with chronic neck pain demonstrate reduced motion and altered patterns of muscle control in the cervical flexor and upper trapezius (UT) muscles during specific tasks. Understanding cervical musculoskeletal function in office workers will better direct intervention and prevention strategies. Methods Measures included neck range of motion; superficial neck flexor muscle activity during a clinical test, the craniocerivcal flexion test; and a motor task, a unilateral muscle coordination task, to assess the activity of both the anterior and posterior neck muscles. Office workers with and without neck pain were formed into 3 groups based on their scores on the Neck Disability Index. Nonworking women without neck pain formed the control group. Surface electromyographic activity was recorded bilaterally from the sternocleidomastoid, anterior scalene (AS), cervical extensor (CE) and UT muscles. Results Workers with neck pain had reduced rotation range and increased activity of the superficial cervical flexors during the craniocervical flexion test. During the coordination task, workers with pain demonstrated greater activity in the CE muscles bilaterally. On completion of the task, the UT and dominant CE and AS muscles demonstrated an inability to relax in workers with pain. In general, there was a linear relationship between the workers’ self-reported levels of pain and disability and the movement and muscle changes. Conclusion These results are consistent with those found in other cervical musculoskeletal disorders and may represent an altered muscle recruitment strategy to stabilize the head and neck. An exercise program including motor reeducation may assist in the management of neck pain in office workers.
Resumo:
Introduction Clinical guidelines for the treatment of chronic low back pain suggest the use of supervised exercise. Motor control (MC) based exercise is widely used within clinical practice but its efficacy is equivalent to general exercise therapy. MC exercise targets the trunk musculature. Considering the mechanical links between the hip, pelvis, and lumbar spine, surprisingly little focus has been on investigating the contribution of the hip musculature to lumbopelvic support. The purpose of this study is to compare the efficacy of two exercise programs for the treatment of non-specific low back pain (NSLBP). Methods Eighty individuals aged 18-65 years of age were randomized into two groups to participate in this trial. The primary outcome measures included self-reported pain intensity (0-100mm VAS) and percent disability (Oswestry Disability Index V2). Bilateral measures of hip strength (N/kg) and two dimensional frontal plane mechanics (º) were the secondary outcomes. Outcomes were measured at baseline and following a six-week home based exercise program including weekly sessions of real-time ultrasound imaging. Results Within group comparisons revealed clinically meaningful reductions in pain for both groups. The MC exercise only (N= 40, xˉ =-20.9mm, 95%CI -25.7, -16.1) and the combined MC and hip exercise (N= 40, xˉ = -24.9mm, 95%CI -30.8, -19.0). There was no statistical difference in the change of pain (xˉ =-4.0mm, t= -1.07, p=0.29, 95%CI -11.5, 3.5) or disability (xˉ =-0.3%, t=-0.19, p=0.85, 95%CI -11.5, 3.5) between groups. Conclusion Both exercise programs had similar and positive effects on NSLBP which support the use of the home based exercise programs with weekly supervised visits. However, the addition of specific hip strengthening exercises to a MC based exercise program did not result in significantly greater reductions in pain or disability. Trial Registration NCTO1567566 Funding: Worker’s Compensation Board Alberta Research Grant.
Resumo:
Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.
Resumo:
This paper discusses the question of when pain and distress relief known to hasten death would cross the line between permissible conduct and killing. The issue is discussed in the context of organ donation after cardiac death, and considers the administration of analgesics, sedatives, and the controversial use of paralysing agents in the provision and withdrawal of ventilation.
Resumo:
A single subject longevity study is presented as a case study for the Medical Device Partnering Program (MDPP). The MDPP supports the development of cutting-edge medical devices and assistive technologies, through unique collaborations between researchers, industry, clinical end-users and government. The study aimed to identify what effect the innersole has on specific muscles that may influence stability and whether the innersole had any influence on gait. Three tests were conducted; a standard gait test, dynamic balance test and a standing balance test. Results from the kinematic analysis showed reduced variability in post testing results when compared to pre testing results. Reductions in muscle activation levels were also found across all tests. Further testing with a larger sample size is required to determine if these effects are due to the innersole.
Resumo:
Background Hallux valgus (HV) is a very common deformity of the first metatarsophalangeal joint that often requires surgical correction. However, the association between structural HV deformity and related foot pain and disability is unclear. Furthermore, no previous studies have investigated concerns about appearance and difficulty with footwear in a population with HV not seeking surgical correction. The aim of this cross-sectional study was to investigate foot pain, functional limitation, concern about appearance and difficulty with footwear in otherwise healthy adults with HV compared to controls. Methods Thirty volunteers with HV (radiographic HV angle >15 degrees) and 30 matched controls were recruited for this study (50 women, 10 men; mean age 44.4 years, range 20 to 76 years). Differences between groups were examined for self-reported foot pain and disability, satisfaction with appearance, footwear difficulty, and pressure-pain threshold at the first metatarsophalangeal joint. Functional measures included balance tests, walking performance, and hallux muscle strength (abduction and plantarflexion). Mean differences (MD) and 95% confidence intervals (CI) were calculated. Results All self-report measures showed that HV was associated with higher levels of foot pain and disability and significant concerns about appearance and footwear (p < 0.001). Lower pressure-pain threshold was measured at the medial first metatarsophalangeal joint in participants with HV (MD = -133.3 kPa, CI: -251.5 to -15.1). Participants with HV also showed reduced hallux plantarflexion strength (MD = -37.1 N, CI: -55.4 to -18.8) and abduction strength (MD = -9.8 N, CI: -15.6 to -4.0), and increased mediolateral sway when standing with both feet with eyes closed (MD = 0.34 cm, CI: 0.04 to 0.63). Conclusions These findings show that HV negatively impacts on self-reported foot pain and function, and concerns about foot appearance and footwear in otherwise healthy adults. There was also evidence of impaired hallux muscle strength and increased postural sway in HV subjects compared to controls, although general physical functioning and participation in physical activity were not adversely affected.
Resumo:
Context: Very few authors have investigated the relationship between hip-abductor muscle strength and frontal-plane knee mechanics during running. Objective: To investigate this relationship using a 3-week hip-abductor muscle-strengthening program to identify changes in strength, pain, and biomechanics in runners with patellofemoral pain syndrome (PFPS). Design: Cohort study. Setting: University-based clinical research laboratory. Patients or Other Participants: Fifteen individuals (5 men, 10 women) with PFPS and 10 individuals without PFPS (4 men, 6 women) participated. Intervention(s): The patients with PFPS completed a 3-week hip-abductor strengthening protocol; control participants did not. Main Outcome Measure(s): The dependent variables of interest were maximal isometric hip-abductor muscle strength, 2-dimensional peak knee genu valgum angle, and stride-to-stride knee-joint variability. All measures were recorded at baseline and 3 weeks later. Between-groups differences were compared using repeated-measures analyses of variance. Results: At baseline, the PFPS group exhibited reduced strength, no difference in peak genu valgum angle, and increased stride-to-stride knee-joint variability compared with the control group. After the 3-week protocol, the PFPS group demonstrated increased strength, less pain, no change in peak genu valgum angle, and reduced stride-to-stride knee-joint variability compared with baseline. Conclusions: A 3-week hip-abductor muscle-strengthening protocol was effective in increasing muscle strength and decreasing pain and stride-to-stride knee-joint variability in individuals with PFPS. However, concomitant changes in peak knee genu valgum angle were not observed.
Resumo:
Context: It has been theorized that a positive Trendelenburg test (TT) indicates weakness of the stance hip-abductor (HABD) musculature, results in contralateral pelvic drop, and represents impaired load transfer, which may contribute to low back pain. Few studies have tested whether weakness of the HABDs is directly related to the magnitude of pelvic drop (MPD). Objective: To examine the relationship between HABD strength and MPD during the static TT and during walking for patients with nonspecific low back pain (NSLBP) and healthy controls (CON). A secondary purpose was to examine this relationship in NSLBP after a 3-wk HABD-strengthening program. Design: Quasi-experimental. Setting: Clinical research laboratory. Participants: 20 (10 NSLBP and 10 CON). Intervention: HABD strengthening. Main Outcome Measures: Normalized HABD strength, MPD during TT, and maximal pelvic frontal-plane excursion during walking. Results: At baseline, the NSLBP subjects were significantly weaker (31%; P = .03) than CON. No differences in maximal pelvic frontal-plane excursion (P = .72), right MPD (P = 1.00), or left MPD (P = .40) were measured between groups. During the static TT, nonsignificant correlations were found between left HABD strength and right MPD for NSLBP (r = -.32, P = .36) and CON (r = -.24, P = .48) and between right HABD strength and left MPD for NSLBP (r = -.24, P = .50) and CON (r = -.41, P = .22). Nonsignificant correlations were found between HABD strength and maximal pelvic frontal-plane excursion for NSLBP (r = -.04, P = .90) and CON (r = -.14, P = .68). After strengthening, NSLBP demonstrated significant increases in HABD strength (12%; P = .02), 48% reduction in pain, and no differences in MPD during static TT and maximal pelvic frontal-plane excursion compared with baseline. Conclusions: HABD strength was poorly correlated to MPD during the static TT and during walking in CON and NSLBP. The results suggest that HABD strength may not be the only contributing factor in controlling pelvic stability, and the static TT has limited use as a measure of HABD function.
Resumo:
The application of different EMS current thresholds on muscle activates not only the muscle but also peripheral sensory axons that send proprioceptive and pain signals to the cerebral cortex. A 32-channel time-domain fNIRS instrument was employed to map regional cortical activities under varied EMS current intensities applied on the right wrist extensor muscle. Eight healthy volunteers underwent four EMS at different current thresholds based on their individual maximal tolerated intensity (MTI), i.e., 10 % < 50 % < 100 % < over 100 % MTI. Time courses of the absolute oxygenated and deoxygenated hemoglobin concentrations primarily over the bilateral sensorimotor cortical (SMC) regions were extrapolated, and cortical activation maps were determined by general linear model using the NIRS-SPM software. The stimulation-induced wrist extension paradigm significantly increased activation of the contralateral SMC region according to the EMS intensities, while the ipsilateral SMC region showed no significant changes. This could be due in part to a nociceptive response to the higher EMS current intensities and result also from increased sensorimotor integration in these cortical regions.
Resumo:
This study investigated the relative contribution of individual, workplace, psychosocial and physiological features associated with neck pain in female office workers towards developing appropriate intervention programs. Workers without disability (Neck Disability Index (NDI) score≤8, n=33); workers with neck pain and disability (NDI≥9/100, n=52) and 22 controls (women who did not work and without neck pain) participated in this study. Two logistic regression models were constructed to test the association between various measures in (1) workers with and without disability, and (2) workers without disability and controls. Measures included those found to be significantly associated with higher NDI in our previous studies: psychosocial domains; individual factors; task demands; quantitative sensory measures and measures of motor function. In the final model, higher score on negative affectivity scale (OR=4.47), greater activity in the neck flexors during cranio-cervical flexion (OR=1.44), cold hyperalgesia (OR=1.27) and longer duration of symptoms (OR=1.19) remained significantly associated with neck pain in workers. Workers without disability and controls could only be differentiated by greater muscle activity in the cervical flexors and extensors during a typing task. No psychosocial domains remained in either regression model. These results suggest that impairments in the sensory and motor system should be considered in any assessment of the office worker with neck pain and may have stronger influences on the presenting symptoms than workplace and psychosocial features.
Resumo:
Objective: Individuals with chronic whiplash-associated disorders (WADs) often note driving as a difficult task. This study’s aims were to (1) compare, while driving, neck motor performance, mental effort, and fatigue in individuals with chronic WAD against healthy controls and (2) investigate the relationships of these variables and neck pain to self-reported driving difficulty in the WAD group. Design: This study involved 14 participants in each group (WAD and control). Measures included self-reported driving difficulty and measures of neck pain intensity, overall fatigue, mental effort, and neck motor performance (head rotation and upper trapezius activity) while driving a simulator. Results: The WAD group had greater absolute path of head rotation in a simulated city area and used greater mental effort (P = 0.04), but there were no differences in other measures while driving compared with the controls (all P Q 0.05). Self-reported driving difficulty correlated moderately with neck pain intensity, fatigue level, and maximum velocity of head rotation while driving in the WAD group (all P G 0.05). Conclusions: Individuals with chronic WAD do not seem to have impaired neck motor performance while driving yet use greater mental effort. Neck pain, fatigue, and maximum head rotation velocity could be potential contributors to self-reported driving difficulty in this group.
Resumo:
Purpose: To establish whether there was a difference in health-related quality of life (HRQoL) in people with chronic musculoskeletal disorders (PwCMSKD) after participating in a multimodal physiotherapy program (MPP) either two or three sessions a week. Methods: Total of 114 PwCMSKD participated in this prospective randomised controlled trial. An individualised MPP, consisting of exercises for mobility, motor-control, muscle strengthening, cardiovascular training, and health education, was implemented either twice a week (G2: n = 58) or three times a week) (G3: n = 56) for 1 year. Outcomes: HRQoL physical and mental health state (PHS/MHS), Roland Morris disability Questionnaire (RMQ), Neck-Disability-Index (NDI) and Western Ontario and McMaster Universities’ Arthritis Index (WOMAC) were used to measure outcomes of MPP for people with chronic low back pain, chronic neck pain and osteoarthritis, respectively. Measures were taken at baseline, 8 weeks (8 w), 6 months (6 m), and 1 year (1 y) after starting the programme. Results: No statistically significant differences were found between the two groups (G2 and G3), except in NDI at 8 w (−3.34, (CI 95%: −6.94/0.84, p = 0.025 (scale 0–50)). All variables showed improvement reaching the following values (from baseline to 1 y) G2: PHS: 57.72 (baseline: 41.17; (improvement: 16.55%), MHS: 74.51 (baseline: 47.46, 27.05%), HRQoL 0.90 (baseline: 0.72, 18%)), HRQoL-VAS 84.29 (baseline: 58.04, 26.25%), RMQ 4.15 (baseline: 7.85, 15.42%), NDI 3.96 (baseline: 21.87, 35.82%), WOMAC 7.17 (baseline: 25.51, 19.10%). G3: PHS: 58.64 (baseline: 39.75, 18.89%), MHS: 75.50 (baseline: 45.45, (30.05%), HRQoL 0.67 (baseline: 0.88, 21%), HRQoL-VAS 86.91 (baseline: 52.64, 34.27%), RMQ 4.83 (baseline: 8.93, 17.08%), NDI 4.91 (baseline: 23.82, 37.82%), WOMAC 6.35 (baseline: 15.30, 9.32%). Conclusions: No significant differences between the two groups were found in the outcomes of a MPP except in the NDI at 8 weeks, but both groups improved in all variables during the course of 1 year under study.