83 resultados para Motor Vehicles by Power Source.
Increase in particle number emissions from motor vehicles due to interruption of steady traffic flow
Resumo:
We assess the increase in particle number emissions from motor vehicles driving at steady speed when forced to stop and accelerate from rest. Considering the example of a signalized pedestrian crossing on a two-way single-lane urban road, we use a complex line source method to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses and show that the total emissions during a red light is significantly higher than during the time when the light remains green. Replacing two cars with one bus increased the emissions by over an order of magnitude. Considering these large differences, we conclude that the importance attached to particle number emissions in traffic management policies be reassessed in the future.
Resumo:
Bicyclists are among the most vulnerable of road users, with high fatal crash rates. Although visibility aids have been widely advocated to help prevent bicycle-vehicle conflicts, to date no study has investigated, among crash-involved cyclists, the kind of visibility aids they were using at the time of the crash. This study undertook a detailed investigation of visibility factors involved in bicyclist-motor-vehicle crashes. We surveyed 184 bicyclists (predominantly from Australia via internet cycling forums) who had been involved in motor vehicle collisions regarding the perceived cause of the collision, ambient weather and general visibility, as well as the clothing and bicycle lights used by the bicyclist. Over a third of the crashes occurred in low light levels (dawn, dusk or night-time), which is disproportionate given that only a small proportion of bicyclists typically ride at these times. Importantly, 19% of these bicyclists reported not using bicycle lights at the time of the crash, and only 34% were wearing reflective clothing. Only two participants (of 184) nominated bicyclist visibility as the cause of the crash: 61% attributed the crash to driver inattention. These findings demonstrate that crash-involved bicyclists tend to under-rate and under-utilise visibility aids as a means of improving their safety.
Resumo:
1. Under the Terms of Reference for the Committee’s Inquiry, ‘lemons’ are defined as ‘new motor vehicles with numerous, severe defects that re-occur despite multiple repair attempts or where defects have caused a new motor vehicle to be out of service for a prolonged period of time’. Consumers are currently protected in relation to lemon purchases by the Australian Consumer Law (ACL) located in Schedule 2 of the Competition and Consumer Act 2010 (Cth) (CCA). The ACL applies as a law of Queensland pursuant to the Fair Trading Act 1989 (Qld). The voluntary recall and consumer guarantees law took effect on 1 January 2011. 2. In 2006, the Government of Victoria made a commitment to introduce a lemon law into the provisions of the then Fair Trading Act 1999 (Vic). The public consultation process on the proposal to introduce a lemon law for motor vehicle purchases in Victoria was conducted by Ms Janice Munt MP, with the assistance of Consumer Affairs Victoria (CAV). CAV released an Issues Paper to canvas with industry and the community options for the development and introduction of a motor vehicle lemon law.(Consumer Affairs Victoria, Introducing Victorian motor vehicle lemon laws, Issues Paper, (September, 2007). 3. A CAV report prepared by Janice Munt MP was released in July, 2008 (Consumer Affairs Victoria, Motor Cars: A report on the motor vehicle lemon law consultations (July 2008) (Victorian Lemon Law Report). However, the Victorian proposal was overtaken by events leading to the adoption of a uniform consumer protection law in all Australian jurisdictions, the ACL. 4. The structure of this submission is to consider first the three different bases upon which consumers can obtain relief for economic loss arising from defects in motor vehicles. The second part of the submission considers the difficulties encountered by consumers in litigating motor vehicle disputes in the courts and tribunals. The third part of the submission examines the approach taken in other jurisdictions to resolving motor vehicle disputes. The final part of the submission considers a number of possible reforms that could be made to the existing law and its enforcement to reduce consumer detriment arising from the purchase of ‘lemon’ motor vehicles. 5. There are three principal bases upon which a consumer can obtain redress for defects in new motor vehicles under the ACL. The first is where the manufacturer admits liability and initiates the voluntary recall procedure provided for in s 128 of the ACL. Under this basis the manufacturer generally repairs or replaces the part subject to the recall free of charge. The second basis is where the manufacturer or dealer denies liability and the consumer is initiates proceedings in the court or tribunal seeking a statutory remedy under the ACL, the nature of which will depend on whether the failure to comply with the consumer guarantee was major or not. The third basis upon which a consumer can obtain redress is pursuant to public enforcement by the ACCC. Each basis will be considered in this part. What all three bases have in common is the need to conduct an investigation to identify the nature of the defect and how it arose.
Resumo:
Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm-3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm-3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.
Resumo:
Ions play an important role in affecting climate and particle formation in the atmosphere. Small ions rapidly attach to particles in the air and, therefore, studies have shown that they are suppressed in polluted environments. Urban environments, in particular, are dominated by motor vehicle emissions and, since motor vehicles are a source of both particles and small ions, the relationship between these two parameters is not well known. In order to gain a better understanding of this relationship, an intensive campaign was undertaken where particles and small ions of both signs were monitored over two week periods at each of three sites A, B and C that were affected to varying degrees by vehicle emissions. Site A was close to a major road and reported the highest particle number and lowest small ion concentrations. Precursors from motor vehicle emissions gave rise to clear particle formation events on five days and, on each day this was accompanied by a suppression of small ions. Observations at Site B, which was located within the urban airshed, though not adjacent to motor traffic, showed particle enhancement but no formation events. Site C was a clean site, away from urban sources. This site reported the lowest particle number and highest small ion concentration. The positive small ion concentration was 10% to 40% higher than the corresponding negative value at all sites. These results confirm previous findings that there is a clear inverse relationship between small ions and particles in urban environments dominated by motor vehicle emissions.
Resumo:
Singapore crash statistics from 2001 to 2006 show that the motorcyclist fatality and injury rates per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as victims of other road users is also about 43%. The objective of this study is to identify the factors that contribute to the fault of motorcyclists involved in crashes. This is done by using the binary logit model to differentiate between at-fault and not-at-fault cases and the analysis is further categorized by the location of the crashes, i.e., at intersections, on expressways and at non-intersections. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Time trend effect shows that not-at-fault crash involvement of motorcyclists has increased with time. The likelihood of night time crashes has also increased for not-at-fault crashes at intersections and expressways. The presence of surveillance cameras is effective in reducing not-at-fault crashes at intersections. Wet road surfaces increase at-fault crash involvement at non-intersections. At intersections, not-at-fault crash involvement is more likely on single lane roads or on median lane of multi-lane roads, while on expressways at-fault crash involvement is more likely on the median lane. Roads with higher speed limit have higher at-fault crash involvement and this is also true on expressways. Motorcycles with pillion passengers or with higher engine capacity have higher likelihood of being at-fault in crashes on expressways. Motorcyclists are more likely to be at-fault in collisions involving pedestrians and this effect is higher at night. In multi-vehicle crashes, motorcyclists are more likely to be victims than at fault. Young and older riders are more likely to be at-fault in crashes than middle-aged group of riders. The findings of this study will help to develop more targeted countermeasures to improve motorcycle safety and more cost-effective safety awareness program in motorcyclist training.
Resumo:
The fatality and injury rate of motorcyclists per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as a victim party is 58% at intersections and as an offending party is 67% at expressways. Previous research efforts showed that the motorcycle safety programs are not very effective in improving motorcycle safety. This is perhaps due to inefficient design of safety program as specific causal factors may not be well explored. The objective of this study is to propose more sophisticated countermeasures and awareness programs for improving motorcycle safety after analyzing specific causal factors for motorcycle crashes at intersections and expressways. Methodologically this study applies the binary logistic model to explore the at-fault or not-at-fault crash involvement of motorcyclists at those locations. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Results shows that the night time crash occurrence, presence of red light camera, lane position, rider age, licence class, and multivehicle collision significantly affect the fault of motorcyclists involved in crashes at intersections. On the other hand, the night time crash occurrence, lane position, speed limit, rider age, licence class, engine capacity, riding with pillion passenger, foreign registered motorcycles, and multivehicle collision has been found to be significant at expressways. Legislate to wear reflective clothes and using reflective markings on the motorcycles and helmets are suggested as an effective countermeasure for reducing their vulnerability. The red light cameras at intersections reduce the vulnerability of motorcycles and hence motorcycle flow and motorcycle crashes should be considered during installation of red light cameras. At signalized intersections, motorcyclists may be taught to follow correct movement and queuing rather than weaving through the traffic as it leads them to become victims of other motorists. The riding simulators in the training centers can be useful to demonstrate the proper movement and queuing at junctions. Riding with pillion passenger and excess speed at expressways are found to significantly influence the at at-fault crash involvement of the motorcyclists. Hence the motorcyclists should be advised to concentrate more on riding while riding with pillion passenger and encouraged to avoid excess speed at expressways. Very young and very older group of riders are found to be at-fault than middle aged groups. Hence this group of riders should be targeted for safety improvement. This can be done by arranging safety talks and programs in motorcycling clubs in colleges and universities as well as community riding clubs with high proportion of elderly riders. It is recommended that the driving centers may use the findings of this study to include in licensure program to make motorcyclists more aware of the different factors which expose the motorcyclists to crash risks so that more defensive riding may be needed.
Resumo:
Executive Summary: Completion of the Veloway 1 (V1) will provide a dedicated and safe route for cyclists between the Brisbane CBD and the Gateway Motorway off-ramp at Eight Mile Plains alongside the South East Motorway. The V1 is being delivered in stages and when completed will provide a dedicated 3m wide cycleway 17km in length. Two stages (D and E) remain to be constructed to complete the V1. Major trip attractors along the V1 include the Mater, Princes Alexandra and Greenslopes Hospitals, two campuses of Griffith University, Garden City shopping centre and the Australian Tax Office. This report assesses the available evidence on the impacts on cycling behaviour of the recently completed V1 Stage C. The data sources informing this review include three intercept surveys, motion activated traffic cameras and travel time surveys on the V1 and adjoining South East Freeway Bikeway (SEFB), Strava app data, and cyclist crash data along Logan Road. The key findings from the evidence are that the completed V1 Stage C has: a Attracted cyclists from Holland Park, Holland Park West, Mt Gravatt and southern parts of Tarragindi onto the V1 Stage C. b Reduced the crash exposure of pedestrians to cyclists by attracting higher speed cyclists off the adjoining SEFB onto the cycling dedicated V1 Stage C. c Reduced the potential crash exposure of cyclists to motor vehicles by attracting cyclists off Logan Road on to the V1. d Provided travel time benefits to cyclists and reduced road crossings (eight down to two). e Predominantly attracted adults commuting alone to and from work and university. The evidence shows that the two traffic crossings across Birdwood Road (required as a temporary measure until the V1 is completed) negate much of the travel time gains of the V1 Stage C compared to the adjoining SEFB for southbound cyclists. Many cyclists accessing the V1 Stage C from the south are cycling in high-volume vehicular traffic lanes to reduce their travel time along Birdwood Road, but in the process are increasing their exposure to crashes with motor vehicles. Based on these findings this report recommends that TMR: a. Continue with plans to complete the V1 Veloway b. Undertake an engineering feasibility assessment to determine the viability of constructing a section of the V1 Stage E from the intersection Weller and Birdwood Roads over Marshall Road and along Bapaume Road on the western side of the Motorway to the intersection of Bapaume and Sterculia Roads. c. In the interim, improve signage and Birdwood Road crossing points for cyclists accessing and egressing the southern end of the V1 Stage C. d. Work with Brisbane City Council to identify the safest and most practical bicycle facilities to facilitate cycle travel between Logan Road and the V1 south of Birdwood Road. e. Improve the awareness of the V1 Stage C through signage for cyclists approaching from the north with the aim of providing a better understanding of the route of the V1 to the south. f. Refine the use of motion activated traffic cameras to improve the capture rate of useable images and obtain an ongoing collection over time of V1 usage data. g. Undertake discussions with Strava, Inc. to refine the presentation of Strava data to improve visual understanding of maps showing before and after cycle route volumes along and on roads leading to the V1.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
We find a robust relationship between motor vehicle ownership, its interaction with legal heritage and obesity in OECD countries. Our estimates indicate that an increase of 100 motor vehicles per thousand residents is associated with about a 6% point increase in obesity in common law countries, whereas it has a much smaller or insignificant impact in civil law countries. These relations hold whether we examine trend data and simple correlations, or conduct cross-section or panel data regression analysis. Our results suggest that obesity rises with motor vehicle ownership in countries following a common law tradition where individual liberty is encouraged, whereas the link is small or statistically non-existent in countries with a civil law background where the rights of the individual tend to be circumscribed by the power of the state.
Resumo:
Particulate matter research is essential because of the well known significant adverse effects of aerosol particles on human health and the environment. In particular, identification of the origin or sources of particulate matter emissions is of paramount importance in assisting efforts to control and reduce air pollution in the atmosphere. This thesis aims to: identify the sources of particulate matter; compare pollution conditions at urban, rural and roadside receptor sites; combine information about the sources with meteorological conditions at the sites to locate the emission sources; compare sources based on particle size or mass; and ultimately, provide the basis for control and reduction in particulate matter concentrations in the atmosphere. To achieve these objectives, data was obtained from assorted local and international receptor sites over long sampling periods. The samples were analysed using Ion Beam Analysis and Scanning Mobility Particle Sizer methods to measure the particle mass with chemical composition and the particle size distribution, respectively. Advanced data analysis techniques were employed to derive information from large, complex data sets. Multi-Criteria Decision Making (MCDM), a ranking method, drew on data variability to examine the overall trends, and provided the rank ordering of the sites and years that sampling was conducted. Coupled with the receptor model Positive Matrix Factorisation (PMF), the pollution emission sources were identified and meaningful information pertinent to the prioritisation of control and reduction strategies was obtained. This thesis is presented in the thesis by publication format. It includes four refereed papers which together demonstrate a novel combination of data analysis techniques that enabled particulate matter sources to be identified and sampling site/year ranked. The strength of this source identification process was corroborated when the analysis procedure was expanded to encompass multiple receptor sites. Initially applied to identify the contributing sources at roadside and suburban sites in Brisbane, the technique was subsequently applied to three receptor sites (roadside, urban and rural) located in Hong Kong. The comparable results from these international and national sites over several sampling periods indicated similarities in source contributions between receptor site-types, irrespective of global location and suggested the need to apply these methods to air pollution investigations worldwide. Furthermore, an investigation into particle size distribution data was conducted to deduce the sources of aerosol emissions based on particle size and elemental composition. Considering the adverse effects on human health caused by small-sized particles, knowledge of particle size distribution and their elemental composition provides a different perspective on the pollution problem. This thesis clearly illustrates that the application of an innovative combination of advanced data interpretation methods to identify particulate matter sources and rank sampling sites/years provides the basis for the prioritisation of future air pollution control measures. Moreover, this study contributes significantly to knowledge based on chemical composition of airborne particulate matter in Brisbane, Australia and on the identity and plausible locations of the contributing sources. Such novel source apportionment and ranking procedures are ultimately applicable to environmental investigations worldwide.
Resumo:
Permanent magnet (PM) motors utilising ironless stator structures have been incorporated into a wide variety of applications where high efficiency and stringent torque control are required. With recent developments in magnetic materials, improved design strategies, and power outputs of up to 40kW, PM motors have become an attractive candidate for traction drives in electric and hybrid electric vehicles. However, due to their large air gaps and ironless stators these motors can have inductances as low as 2μH, imposing increased requirements on the converter to minimise current ripple. Multilevel converters with n cells can effectively increase the motor inductance by a factor of n2 and are an excellent approach to minimise the motor ripple current. Furthermore by indirectly coupling the outputs of each cell, improvements in converter input and cell ripple current can also be realised. This paper examines the issues in designing a high current indirectly coupled multilevel motor controller for an ironless BLDC traction drive and highlights the limitations of the common ladder core structure.