265 resultados para Middle Gluteal Muscle


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Tubulointerstitial lesions, characterized by tubular injury, interstitial fibrosis and the appearance of myofibroblasts, are the strongest predictors of the degree and progression of chronic renal failure. These lesions are typically preceded by macrophage infiltration of the tubulointerstitium, raising the possibility that these inflammatory cells promote progressive renal disease through fibrogenic actions on resident tubulointerstitial cells. The aim of the present study, therefore, was to investigate the potentially fibrogenic mechanisms of interleukin-1beta (IL-1beta), a macrophage-derived pro-inflammatory cytokine, on human proximal tubule cells (PTC). METHODS Confluent, quiescent, passage 2 PTC were established in primary culture from histologically normal segments of human renal cortex (N = 11) and then incubated in serum- and hormone-free media supplemented with either IL-1beta (0 to 4 ng/mL) or vehicle (control). RESULTS IL-1beta significantly enhanced fibronectin secretion by up to fourfold in a time- and concentration-dependent fashion. This was accompanied by significant (2.5- to 6-fold) increases in alpha-smooth muscle actin (alpha-SMA) expression, transforming growth factor beta (TGF-beta1) secretion, nitric oxide (NO) production, NO synthase 2 (NOS2) mRNA and lactate dehydrogenase (LDH) release. Cell proliferation was dose-dependently suppressed by IL-1beta. NG-methyl-l-arginine (L-NMMA; 1 mmol/L), a specific inhibitor of NOS, blocked NO production but did not alter basal or IL-1beta-stimulated fibronectin secretion. In contrast, a pan-specific TGF-beta neutralizing antibody significantly blocked the effects of IL-1beta on PTC fibronectin secretion (IL-1beta, 268.1 +/- 30.6 vs. IL-1beta+alphaTGF-beta 157.9 +/- 14.4%, of control values, P < 0.001) and DNA synthesis (IL-1beta 81.0 +/- 6.7% vs. IL-1beta+alphaTGF-beta 93.4 +/- 2.1%, of control values, P < 0.01). CONCLUSION IL-1beta acts on human PTC to suppress cell proliferation, enhance fibronectin production and promote alpha-smooth muscle actin expression. These actions appear to be mediated by a TGF-beta1 dependent mechanism and are independent of nitric oxide release.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The vasoconstricting peptide endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, vascular smooth muscle cell (VSMC) growth stimulation, and intimal thickening. ET-1 binds 2 receptor subtypes, endothelin A and B, and the ETA receptor mediates vasoconstriction and VSMC growth. This study aims to quantitatively assess arterial remodeling variables and compare them with changes in ET-1, ETA, and ETB expression in the internal mammary artery (IMA). METHODS AND RESULTS: Specimens from 55 coronary artery disease (CAD) patients (45 men, 10 women; mean age 65 years) and 14 control IMA specimens (from 7 men and 7 women; mean age 45 years) were collected. IMA cross sections were assessed by histochemical and immunohistochemical staining methods to quantify the levels of medionecrosis, fibrosis, VSMC growth, ET-1, ETA, ETB, and macrophage infiltration. The percentage area of medionecrosis in the patients was almost double that in the controls (31.85+/-14.52% versus 17.10+/-9.96%, P=0.0006). Total and type 1 collagen was significantly increased compared with controls (65.8+/-18.3% versus 33.7+/-13.7%, P=0.07, and 14.2+/-10.0% versus 4.8+/-2.8%, P=0.01, respectively). Despite ACE and/or statin therapy, ET-1 expression and cell cycling were significantly elevated in the patient IMAs relative to the controls (46.27+/-18.46 versus 8.56+/-8.42, P=0.0001, and 37.29+/-12.88 versus 11.06+/-8.18, P=0.0001, respectively). ETA and ETB staining was elevated in the patient vessels (46.88+/-11.52% versus 18.58+/-7.65%, P=0.0001, and 42.98+/-7.08% versus 34.73+/-5.20%, P=0.0067, respectively). A mild presence of macrophages was noted in all sections. CONCLUSIONS: Elevated distribution of collagen indicative of fibrosis coupled with increased cell cycling and high levels of ET-1 and ETA expression in the absence of chronic inflammation suggests altered IMA VSMC regulation is fundamental to the remodeling process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: This study investigated the association between the basal (rest) insulin-signaling proteins, Akt, and the Akt substrate AS160, metabolic risk factors, inflammatory markers and aerobic fitness, in middle-aged women with varying numbers of metabolic risk factors for type 2 diabetes. Methods: Sixteen women (n = 16) aged 51.3+/-5.1 (mean +/-SD) years provided muscle biopsies and blood samples at rest. In addition, anthropometric characteristics and aerobic power were assessed and the number of metabolic risk factors for each participant was determined (IDF criteria). Results: The mean number of metabolic risk factors was 1.6+/-1.2. Total Akt was negatively correlated with IL-1 beta (r = -0.45, p = 0.046), IL-6 (r = -0.44, p = 0.052) and TNF-alpha (r = -0.51, p = 0.025). Phosphorylated AS160 was positively correlated with HDL (r = 0.58, p = 0.024) and aerobic fitness (r = 0.51, p = 0.047). Furthermore, a multiple regression analysis revealed that both HDL (t = 2.5, p = 0.032) and VO(2peak) (t = 2.4, p = 0.037) were better predictors for phosphorylated AS160 than TNF-alpha or IL-6 (p>0.05). Conclusions: Elevated inflammatory markers and increased metabolic risk factors may inhibit insulin-signaling protein phosphorylation in middle-aged women, thereby increasing insulin resistance under basal conditions. Furthermore, higher HDL and fitness levels are associated with an increased AS160 phosphorylation, which may in turn reduce insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To investigate the validity of the Trendelenburg test (TT) using an ultrasound-guided nerve block (UNB) of the superior gluteal nerve and determine whether the reduction in hip abductor muscle (HABD) strength would result in the theorized mechanical compensatory strategies measured during the TT. Design: Quasi-experimental. Setting: Hospital. Participants: Convenience sample of 9 healthy men. Only participants with no current or previous injury to the lumbar spine, pelvis, or lower extremities, and no previous surgeries were included. Interventions: Ultrasound-guided nerve block. Main Outcome Measures: Hip abductor muscle strength (percent body weight [%BW]), contralateral pelvic drop (cPD), change in contralateral pelvic drop (Delta cPD), ipsilateral hip adduction, and ipsilateral trunk sway (TRUNK) measured in degrees. Results: The median age and weight of the participants were 31 years (interquartile range [IQR], 22-32 years) and 73 kg (IQR, 67-81 kg), respectively. An average 52% reduction of HABD strength (z = 2.36, P = 0.02) resulted after the UNB. No differences were found in cPD or Delta cPD (z = 0.01, P = 0.99, z = 20.67, P = 0.49, respectively). Individual changes in biomechanics showed no consistency between participants and nonsystematic changes across the group. One participant demonstrated the mechanical compensations described by Trendelenburg. Conclusions: The TT should not be used as a screening measure for HABD strength in populations demonstrating strength greater than 30% BW but should be reserved for use with populations with marked HABD weakness. Clinical Relevance: This study presents data regarding a critical level of HABD strength required to support the pelvis during the TT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The Trendelenburg Test (TT) is used to assess the functional strength of the hip abductor muscles (HABD), their ability to control frontal plane motion of the pelvis, and the ability of the lumbopelvic complex to transfer load into single leg stance. Rationale: Although a standard method to perform the test has been described for use within clinical populations, no study has directly investigated Trendelenburg’s hypotheses. Purpose: To investigate the validity of the TT using an ultrasound guided nerve block (UNB) of the superior gluteal nerve and determine whether the reduction in HABD strength would result in the theorized mechanical compensatory strategies measured during the TT. Methods: Quasi-experimental design using a convenience sample of nine healthy males. Only subjects with no current or previous injury to the lumbar spine, pelvis, or lower extremities, and no previous surgeries were included. Force dynamometry was used to evaluation HABD strength (%BW). 2D mechanics were used to evaluate contralateral pelvic drop (cMPD), change in contralateral pelvic drop (∆cMPD), ipsilateral hip adduction (iHADD) and ipsilateral trunk sway (TRUNK) measured in degrees (°). All measures were collected prior to and following a UNB on the superior gluteal nerve performed by an interventional radiologist. Results: Subjects’ age was median 31yrs (IQR:22-32yrs); and weight was median 73kg (IQR:67-81kg). An average 52% reduction of HABD strength (z=2.36,p=0.02) resulted following the UNB. No differences were found in cMPD or ∆cMPD (z=0.01,p= 0.99, z=-0.67,p=0.49). Individual changes in biomechanics show no consistency between subjects and non-systematic changes across the group. One subject demonstrated the mechanical compensations described by Trendelenburg. Discussion: The TT should not be used as screening measure for HABD strength in populations demonstrating strength greater than 30%BW but reserved for use with populations with marked HABD weakness. Importance: This study presents data regarding a critical level of HABD strength required to support the pelvis during the TT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Carbonic anhydrase IX (CA IX) expression has been described as an endogenous marker of hypoxia in solid neoplasms. Furthermore, CA IX expression has been associated with an aggressive phenotype and resistance to radiotherapy. We assessed the prognostic significance of CA IX expression in patients with muscle-invasive bladder cancer treated with radiotherapy. Materials and methods: A standard immunohistochemistry technique was used to show CA IX expression in 110 muscle-invasive bladder tumours treated with radiotherapy. Clinicopathological data were obtained from medical case notes. Results: CA IX immunostaining was detected in 89 (∼81%) patients. Staining was predominantly membranous, with areas of concurrent cytoplasmic and nuclear staining and was abundant in luminal and perinecrotic areas. No significant correlation was shown between the overall CA IX status and the initial response to radiotherapy, 5-year bladder cancer-specific survival or the time to local recurrence. Conclusions: The distribution of CA IX expression in paraffin-embedded tissue sections seen in this series is consistent with previous studies in bladder cancer, but does not provide significant prognostic information with respect to the response to radiotherapy at 3 months and disease-specific survival after radical radiotherapy. © 2007 The Royal College of Radiologists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Researchers have postulated that reduced hip-abductor muscle strength may have a role in the progression of knee osteoarthritis by increasing the external knee-adduction moment. However, the relationship between hip-abductor strength and frontal-plane biomechanics remains unclear. To experimentally reduce hip-abduction strength and observe the subsequent changes in frontal-plane biomechanics. Descriptive laboratory study. Research laboratory. Eight healthy, recreationally active men (age = 27 ± 6 years, height = 1.75 ± 0.11 m, mass = 76.1 ± 10.0 kg). All participants underwent a superior gluteal nerve block injection to reduce the force output of the hip-abductor muscle group. Maximal isometric hip-abduction strength and gait biomechanical data were collected before and after the injections. Gait biomechanical variables collected during walking consisted of knee- and hip-adduction moments and impulses and the peak angles of contralateral pelvic drop, hip adduction, and ipsilateral trunk lean. Hip-abduction strength was reduced after the injection (P = .001) and remained lower than baseline values at the completion of the postinjection gait data collection (P = .02). No alterations in hip- or knee-adduction moments (hip: P = .11; knee: P = .52) or impulses (hip: P = .16; knee: P = .41) were found after the nerve block. Similarly, no changes in angular kinematics were observed for contralateral pelvic drop (P = .53), ipsilateral trunk lean (P = .78), or hip adduction (P = .48). A short-term reduction in hip-abductor strength was not associated with alterations in the frontal-plane gait biomechanics of young, healthy men. Further research is needed to determine whether a similar relationship is true in older adults with knee osteoarthritis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The aim of this study was to compare through surface electromyographic (sEMG) recordings of the maximum voluntary contraction (MVC) on dry land and in water by manual muscle test (MMT). Method Sixteen healthy right-handed subjects (8 males and 8 females) participated in measurement of muscle activation of the right shoulder. The selected muscles were the cervical erector spinae, trapezius, pectoralis, anterior deltoid, middle deltoid, infraspinatus and latissimus dorsi. The MVC test conditions were random with respect to the order on the land/in water. Results For each muscle, the MVC test was performed and measured through sEMG to determine differences in muscle activation in both conditions. For all muscles except the latissimus dorsi, no significant differences were observed between land and water MVC scores (p = 0.063–0.679) and precision (%Diff = 7–10%) were observed between MVC conditions in the muscles trapezius, anterior deltoid and middle deltoid. Conclusions If the procedure for data collection is optimal, under MMT conditions it appears that comparable MVC sEMG values were achieved on land and in water and the integrity of the EMG recordings were maintained during wáter immersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical muscle stimulation (EMS) devices are being marketed as weight/ fat loss devices throughout the world. Commercially available stimulators have the ability to evoke muscle contractions that may affect caloric expenditure while the device is being used. The aim of this study was to test the effects of two different EMS devices (Abtronic and Feminique) on oxygen consumption at rest. Subjects arrived for testing after an overnight fast, had the devices fitted, and then positioned supine with expired air measured to determine oxygen consumption. After a 10-minute acclimation period, oxygen consumption was measured for 20 minutes with the device switched off (resting) then 20 minutes with the device switched on (stimulated). There were no significant differences (p > 0.05) in oxygen consumption between the resting and stimulated periods with either the Abtronic (mean +/- SD; resting, 3.40 +/- 0.44; stimulated, 3.45 +/- 0.53 ml of O2[middle dot]kg-1[middle dot]min-1) or the Feminique (resting, 3.73 +/- 0.45; stimulated, 3.75 +/- 0.46 ml of O2[middle dot]kg-1[middle dot]min-1). In summary, the EMS devices tested had no effect on oxygen consumption during muscle stimulation.