182 resultados para Mechanical flocculation
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (ζ) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (?) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
Background: Conventional biodiesel production relies on trans-esterification of lipids extracted from vegetable crops. However, the use of valuable vegetable food stocks as raw material for biodiesel production makes it an unfeasibly expensive process. Used cooking oil is a finite resource and requires extra downstream processing, which affects the amount of biodiesel that can be produced and the economics of the process. Lipids extracted from microalgae are considered an alternative raw material for biodiesel production. This is primarily due to the fast growth rate of these species in a simple aquaculture environment. However, the dilute nature of microalgae culture puts a huge economic burden on the dewatering process especially on an industrial scale. This current study explores the performance and economic viability of chemical flocculation and tangential flow filtration (TFF) for the dewatering of Tetraselmis suecicamicroalgae culture. Results: Results show that TFF concentrates the microalgae feedstock up to 148 times by consuming 2.06 kWh m-3 of energy while flocculation consumes 14.81 kWhm-3 to concentrate the microalgae up to 357 times. Economic evaluation demonstrates that even though TFF has higher initial capital investment than polymer flocculation, the payback period for TFF at the upper extreme ofmicroalgae revenue is ∼1.5 years while that of flocculation is ∼3 years. Conclusion: These results illustrate that improved dewatering levels can be achieved more economically by employing TFF. The performances of these two techniques are also compared with other dewatering techniques.
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.