63 resultados para Mattos, Tomás de
Resumo:
Polybrominated diphenyl ethers (PBDEs) are lipophilic, persistent pollutants found worldwide in environmental and human samples. Exposure pathways for PBDEs remain unclear but may include food, air and dust. The aim of this study was to conduct an integrated assessment of PBDE exposure and human body burden using 10 matched samples of human milk, indoor air and dust collected in 2007–2008 in Brisbane, Australia. In addition, temporal analysis was investigated comparing the results of the current study with PBDE concentrations in human milk collected in 2002–2003 from the same region. PBDEs were detected in all matrices and the median concentrations of BDEs -47 and -209 in human milk, air and dust were: 4.2 and 0.3 ng/g lipid; 25 and 7.8 pg/m3; and 56 and 291 ng/g dust, respectively. Significant correlations were observed between the concentrations of BDE-99 in air and human milk (r = 0.661, p = 0.038) and BDE-153 in dust and BDE-183 in human milk (r = 0.697, p = 0.025). These correlations do not suggest causal relationships — there is no hypothesis that can be offered to explain why BDE-153 in dust and BDE-183 in milk are correlated. The fact that so few correlations were found in the data could be a function of the small sample size, or because additional factors, such as sources of exposure not considered or measured in the study, might be important in explaining exposure to PBDEs. There was a slight decrease in PBDE concentrations from 2002–2003 to 2007–2008 but this may be due to sampling and analytical differences. Overall, average PBDE concentrations from these individual samples were similar to results from pooled human milk collected in Brisbane in 2002–2003 indicating that pooling may be an efficient, cost-effective strategy of assessing PBDE concentrations on a population basis. The results of this study were used to estimate an infant's daily PBDE intake via inhalation, dust ingestion and human milk consumption. Differences in PBDE intake of individual congeners from the different matrices were observed. Specifically, as the level of bromination increased, the contribution of PBDE intake decreased via human milk and increased via dust. As the impacts of the ban of the lower brominated (penta- and octa-BDE) products become evident, an increased use of the higher brominated deca-BDE product may result in dust making a greater contribution to infant exposure than it does currently. To better understand human body burden, further research is required into the sources and exposure pathways of PBDEs and metabolic differences influencing an individual's response to exposure. In addition, temporal trend analysis is necessary with continued monitoring of PBDEs in the human population as well as in the suggested exposure matrices of food, dust and air.
Resumo:
Introduction Polybrominated diphenyl ethers (PBDEs) are considered to be a cost effective and efficient way to reduce the possibility of product ignition and inhibit the spread of fire, thereby limiting harm caused by fires. PBDEs are incorporated into a wide variety of manufactured products and are now considered an ubiquitous contaminant found worldwide in biological and environmental samples . In comparison to “traditional” persistent organic pollutants (POPs), the exposure modes of PBDEs in humans are less well defined, although dietary sources, inhalation (air/particulate matter) and dust ingestion have been reported 2-4. Limited investigations of population specific factors such as age or gender and PBDE concentrations report: no conclusive correlation by age in adults ; higher concentrations in children ; similar concentrations in maternal and cord blood ; and no gender differences . After preliminary findings of higher PBDE concentrations in children than in adults in Australia11 we sought to investigate at what age the PBDE concentrations peaked in an effort to focus exposure studies. This investigation involved the collection of blood samples from young age groups and the development of a simple model to predict PBDE concentrations by age in Australia.
Resumo:
The bactericide triclosan has found wide-spread use in e.g. soaps, deodorants and toothpastes. Recent in vitro and in vivo studies indicate that triclosan might exert adverse effects in humans. Triclosan has previously been shown to be present in human plasma and milk at concentrations that are well correlated to the use of personal care products containing triclosan. In this study we investigated the influence of age, gender, and the region of residence on triclosan concentrations in pooled samples of Australian human blood serum. The results showed no influence of region of residence on the concentrations of triclosan. There was a small but significant influence of age and gender on the serum triclosan concentrations, which were higher in males than in females, and highest in the group of 31–45 year old males and females. However, overall there was a lack of pronounced differences in the triclosan concentrations within the dataset, which suggests that the exposure to triclosan among different groups of the Australian population is relatively homogenous. A selection of the dataset was compared with previous measurements of triclosan concentrations in human plasma from Sweden, where the use of triclosan is expected to be low due to consumer advisories. The triclosan concentrations were a factor of 2 higher in Australian serum than in Swedish plasma.
Resumo:
Pooled serum samples collected from 8132 residents in 2002/03 and 2004/05 were analyzed to assess human polybrominated diphenyl ether (PBDE) concentrations from specified strata of the Australian population. The strata were defined by age (0−4 years, 5−15 years, < 16 years, 16−30 years, 31−45 years, 46−60 years, and >60 years); region; and gender. For both time periods, infants and older children had substantially higher PBDE concentrations than adults. For samples collected in 2004/05, the mean ± standard deviation ΣPBDE (sum of the homologue groups for the mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, and deca-BDEs) concentrations for 0−4 and 5−15 years were 73 ± 7 and 29 ± 7 ng g−1 lipid, respectively, while for all adults >16 years, the mean concentration was lower at 18 ± 5 ng g−1 lipid. A similar trend was observed for the samples collected in 2002/03, with the mean ΣPBDE concentration for children <16 years being 28 ± 8 ng g−1 lipid and for the adults >16 years, 15 ± 5 ng g−1 lipid. No regional or gender specific differences were observed. Measured data were compared with a model that we developed to incorporate the primary known exposure pathways (food, air, dust, breast milk) and clearance (half-life) data. The model was used to predict PBDE concentration trends and indicated that the elevated concentrations in infants were primarily due to maternal transfer and breast milk consumption with inhalation and ingestion of dust making a comparatively lower contribution.
Resumo:
Polyfluoroalkyl chemicals (PFCs) have been used worldwide for more than 50 years in a wide variety of industrial and consumer products. Limited data exist on human exposure to PFCs in the Southern Hemisphere. Human blood serum collected in southeast Queensland, Australia, in 2006−2007 from 2420 donors was pooled according to age (cord blood, 0−0.5, 0.6−1, 1.1−1.5, 1.6−2, 2.1−2.5, 2.6−3, 3.1−3.5, 3.6−4, 4.1−6, 6.1−9, 9.1−12, 12.1−15, 16−30, 31−45, 46−60, and >60 years) and gender and was analyzed for eight PFCs. Across all pools, perfluorooctane sulfonate (PFOS) was detected at the highest mean concentration (15.2 ng/mL) followed by perfluorooctanoate (PFOA, 6.4 ng/mL), perfluorohexane sulfonate (PFHxS, 3.1 ng/mL), perfluorononanoate (PFNA, 0.8 ng/mL), 2-(N-methyl-perfluorooctance sulfonamide) acetate (Me-PFOSA-AcOH, 0.66 ng/mL), and perfluorodecanoate (PFDeA, 0.29 ng/mL). Perfluorooctane sulfonamide was detected in only 24% of the pools, and 2-(N-ethylperfluorooctane sulfonamide) acetate was detected in only one. PFOS concentrations were significantly higher in pools from adult males than from adult females (p = 0.002); no gender differences were apparent in the pools from children (<12 years old). The highest mean concentrations of PFOA, PFHxS, PFNA, PFDeA, and Me-PFOSA-AcOH were found in children <15 years, while PFOS was highest in adults >60 years. Investigation into the sources and exposure pathways in Australia, in particular for children, is necessary as well as continued biomonitoring to determine the potential effects on human concentrations as a result of changes in the PFC manufacturing practices, including the cessation of production of several PFCs.
Resumo:
Background: Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in many products and have been detected in human samples worldwide. Limited data show that concentrations are elevated in young children. Objectives: We investigated the association between PBDEs and age with an emphasis on young children from Australia in 2006–2007. Methods: We collected human blood serum samples (n = 2,420), which we stratified by age and sex and pooled for analysis of PBDEs. Results: The sum of BDE-47, -99, -100, and -153 concentrations (Σ4PBDE) increased from 0–0.5 years (mean ± SD, 14 ± 3.4 ng/g lipid) to peak at 2.6–3 years (51 ± 36 ng/g lipid; p < 0.001) and then decreased until 31–45 years (9.9 ± 1.6 ng/g lipid). We observed no further significant decrease among ages 31–45, 45–60 (p = 0.964), or > 60 years (p = 0.894). The mean Σ4PBDE concentration in cord blood (24 ± 14 ng/g lipid) did not differ significantly from that in adult serum at ages 15–30 (p = 0.198) or 31–45 years (p = 0.140). We found no temporal trend when we compared the present results with Australian PBDE data from 2002–2005. PBDE concentrations were higher in males than in females; however, this difference reached statistical significance only for BDE-153 (p = 0.05). Conclusions: The observed peak concentration at 2.6–3 years of age is later than the period when breast-feeding is typically ceased. This suggests that in addition to the exposure via human milk, young children have higher exposure to these chemicals and/or a lower capacity to eliminate them. Key words: Australia, children, cord blood, human blood serum, PBDEs, polybrominated diphenyl ethers. Environ Health Perspect 117:1461–1465 (2009). doi:10.1289/ehp.0900596
Resumo:
Introduction Polybrominated diphenyl ethers (PBDEs) are considered to be a cost effective and efficient way to reduce the possibility of product ignition and inhibit the spread of fire, thereby limiting harm caused by fires. PBDEs are incorporated into a wide variety of manufactured products and are now considered an ubiquitous contaminant found worldwide in biological and environmental samples1 . In comparison to “traditional” persistent organic pollutants (POPs), the exposure modes of PBDEs in humans are less well defined, although dietary sources, inhalation (air/particulate matter) and dust ingestion have been reported 2-4. Limited investigations of population specific factors such as age or gender and PBDE concentrations report: no conclusive correlation by age in adults; higher concentrations in children ; similar concentrations in maternal and cord blood; and no gender differences. After preliminary findings of higher PBDE concentrations in children than in adults in Australia11 we sought to investigate at what age the PBDE concentrations peaked in an effort to focus exposure studies. This investigation involved the collection of blood samples from young age groups and the development of a simple model to predict PBDE concentrations by age in Australia.
Resumo:
The city and the urban condition, popular subjects of art, literature, and film, have been commonly represented as fragmented, isolating, violent, with silent crowds moving through the hustle and bustle of a noisy, polluted cityspace. Included in this diverse artistic field is children’s literature—an area of creative and critical inquiry that continues to play a central role in illuminating and shaping perceptions of the city, of city lifestyles, and of the people who traverse the urban landscape. Fiction’s textual representations of cities, its sites and sights, lifestyles and characters have drawn on traditions of realist, satirical, and fantastic writing to produce the protean urban story—utopian, dystopian, visionary, satirical—with the goal of offering an account or critique of the contemporary city and the urban condition. In writing about cities and urban life, children’s literature variously locates the child in relation to the social (urban) space. This dialogic relation between subject and social space has been at the heart of writings about/of the flâneur: a figure who experiences modes of being in the city as it transforms under the influences of modernism and postmodernism. Within this context of a changing urban ontology brought about by (post)modern styles and practices, this article examines five contemporary picture books: The Cows Are Going to Paris by David Kirby and Allen Woodman; Ooh-la-la (Max in love) by Maira Kalman; Mr Chicken Goes to Paris and Old Tom’s Holiday by Leigh Hobbs; and The Empty City by David Megarrity. I investigate the possibility of these texts reviving the act of flânerie, but in a way that enables different modes of being a flâneur, a neo-flâneur. I suggest that the neo-flâneur retains some of the characteristics of the original flâneur, but incorporates others that take account of the changes wrought by postmodernity and globalization, particularly tourism and consumption. The dual issue at the heart of the discussion is that tourism and consumption as agents of cultural globalization offer a different way of thinking about the phenomenon of flânerie. While the flâneur can be regarded as the precursor to the tourist, the discussion considers how different modes of flânerie, such as the tourist-flâneur, are an inevitable outcome of commodification of the activities that accompany strolling through the (post)modern urban space.