133 resultados para Machine-tools -- Maintenance and repair
Resumo:
Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.
Resumo:
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
Resumo:
It is questionable whether activities like construction, including maintenance and repair, can be considered a single entity or industry - on the basis that different sectors of construction/maintenance use fundamentally distinct resource and skill bases. This creates a number of issues including the development of competition and reform policy. de Valance deployed the Structure-Conduct-Performance model (SCP) to delineate sectors of new/installation construction activity and, in doing so, proposes that there exists multiple market structures in a given project. The purpose of this paper is to apply the SCP model to a different sector of construction activity, that is air conditioning maintenance and test de Valance's proposition concerning the existence of multiple market structures in a supply chain but this time to a built facility. The research method combines secondary data concerning the "Structure" component of the SCP model and primary data with regard to the "Conduct" and "Performance" parts of the SCP model. The results provide further support (beyond de Valance's analysis of new/installation activity) that a sector system approach using the SCP model is a more effective way to analyse market structures in construction activity. This paper also supports de Valance's proposition concerning the existence of multiple market structures in a supply chain to a project/facility.
Final : report assessing risk and variation in maintenance and rehabilitation costs for road network
Resumo:
This report presents the results of research projects conducted by The Australian Cooperative Research Centre for Construction Innovation, Queensland University of Technology, RMIT University, Queensland Government Department of Main Roads and Queensland Department of Public Works. The research projects aimed at developing a methodology for assessing variation and risk in investment in road network, including the application of the method in assessing road network performance and maintenance and rehabilitation costs for short- and long-term future investment.
Resumo:
In the previous research CRC CI 2001-010-C “Investment Decision Framework for Infrastructure Asset Management”, a method for assessing variation in cost estimates for road maintenance and rehabilitation was developed. The variability of pavement strength collected from a 92km national highway was used in the analysis to demonstrate the concept. Further analysis was conducted to identify critical input parameters that significantly affect the prediction of road deterioration. In addition to pavement strength, rut depth, annual traffic loading and initial roughness were found to be critical input parameters for road deterioration. This report presents a method developed to incorporate other critical parameters in the analysis, such as unit costs, which are suspected to contribute to a certain degree to cost estimate variation. Thus, the variability of unit costs will be incorporated in this analysis. Bruce Highway located in the tropical east coast of Queensland has been identified to be the network for the analysis. This report presents a step by step methodology for assessing variation in road maintenance and rehabilitation cost estimates.
Resumo:
An estimation of costs for maintenance and rehabilitation is subject to variation due to the uncertainties of input parameters. This paper presents the results of an analysis to identify input parameters that affect the prediction of variation in road deterioration. Road data obtained from 1688 km of a national highway located in the tropical northeast of Queensland in Australia were used in the analysis. Data were analysed using a probability-based method, the Monte Carlo simulation technique and HDM-4’s roughness prediction model. The results of the analysis indicated that among the input parameters the variability of pavement strength, rut depth, annual equivalent axle load and initial roughness affected the variability of the predicted roughness. The second part of the paper presents an analysis to assess the variation in cost estimates due to the variability of the overall identified critical input parameters.
Resumo:
Optimal operation and maintenance of engineering systems heavily rely on the accurate prediction of their failures. Most engineering systems, especially mechanical systems, are susceptible to failure interactions. These failure interactions can be estimated for repairable engineering systems when determining optimal maintenance strategies for these systems. An extended Split System Approach is developed in this paper. The technique is based on the Split System Approach and a model for interactive failures. The approach was applied to simulated data. The results indicate that failure interactions will increase the hazard of newly repaired components. The intervals of preventive maintenance actions of a system with failure interactions, will become shorter compared with scenarios where failure interactions do not exist.
Resumo:
We describe a sensor network deployment method using autonomous flying robots. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data we collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for a second, repair, pass to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth.).