39 resultados para MATING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sexual maturation and mating in insects are generally accompanied by major physiological and behavioural changes. Many of these changes are related to the need to locate a mate and subsequently, in the case of females, to switch from mate searching to oviposition behaviour. The prodigious reproductive capacity of the Mediterranean fruit fly, Ceratitis capitata, is one of the factors that has led to its success as an invasive pest species. To identify the molecular changes related to maturation and mating status in male and female medfly, a microarray-based gene expression approach was used to compare the head transcriptomes of sexually immature, mature virgin, and mated individuals. Attention was focused on the changes in abundance of transcripts related to reproduction, behaviour, sensory perception of chemical stimulus, and immune system processes. Broad transcriptional changes were recorded during female maturation, while post-mating transcriptional changes in females were, by contrast, modest. In male medfly, transcriptional changes were consistent both during maturation and as a consequence of mating. Of particular note was the lack of the mating-induced immune responses that have been recorded for Drosophila melanogaster, that may be due to the different reproductive strategies of these species. This study, in addition to increasing our understanding of the molecular machinery behind maturation and mating in the medfly, has identified important gene targets that might be useful in the future management of this pest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bactrocera dorsalis (Hendel), Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, and Bactrocera carambolae Drew & Hancock are pest members within the B. dorsalis species complex of tropical fruit flies. The species status of these taxa is unclear and this confounds quarantine, pest management, and general research. Mating studies carried out under uniform experimental conditions are required as part of resolving their species limits. These four taxa were collected from the wild and established as laboratory cultures for which we subsequently determined levels of prezygotic compatibility, assessed by field cage mating trials for all pair-wise combinations. We demonstrate random mating among all pair-wise combinations involving B. dorsalis, B. papayae, and B. philippinensis. B. carambolae was relatively incompatible with each of these species as evidenced by nonrandom mating for all crosses. Reasons for incompatibility involving B. carambolae remain unclear; however, we observed differences in the location of couples in the field cage for some comparisons. Alongside other factors such as pheromone composition or other courtship signals, this may lead to reduced interspecific mating compatibility with B. carambolae. These data add to evidence that B. dorsalis, B. papayae, and B. philippinensis represent the same biological species, while B. carambolae remains sufficiently different to maintain its current taxonomic identity. This poses significant implications for this group's systematics, impacting on pest management, and international trade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new algorithm based on honey-bee mating optimization (HBMO) to estimate harmonic state variables in distribution networks including distributed generators (DGs). The proposed algorithm performs estimation for both amplitude and phase of each harmonics by minimizing the error between the measured values from phasor measurement units (PMUs) and the values computed from the estimated parameters during the estimation process. Simulation results on two distribution test system are presented to demonstrate that the speed and accuracy of proposed distribution harmonic state estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as weight least square (WLS), genetic algorithm (GA) and tabu search (TS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an efficient algorithm for multi-objective distribution feeder reconfiguration based on Modified Honey Bee Mating Optimization (MHBMO) approach. The main objective of the Distribution feeder reconfiguration (DFR) is to minimize the real power loss, deviation of the nodes’ voltage. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. So the metahuristic algorithm has been applied to this problem. This paper describes the full algorithm to Objective functions paid, The results of simulations on a 32 bus distribution system is given and shown high accuracy and optimize the proposed algorithm in power loss minimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invasive fruit fly, Bactrocera invadens Drew, Tsuruta & White, is a highly polyphagous fruit pest that occurs predominantly in Africa yet has its origins in the Indian subcontinent. It is extremely morphologically and genetically similar to the Oriental fruit fly, Bactrocera dorsalis (Hendel); as such the specific relationship between these two species is unresolved. We assessed prezygotic compatibility between B. dorsalis and B. invadens using standardized field cage mating tests, which have proven effectiveness in tephritid cryptic species studies. These tests were followed by an assessment of postzygotic compatibility by examining egg viability, larval and pupal survival, and sex ratios of offspring produced from parental and subsequent F1 crosses to examine for hybrid breakdown as predicted under a two-species hypothesis. B. dorsalis was sourced from two countries (Pakistan and China), and each population was compared with B. invadens from its type locality of Kenya. B. invadens mated randomly with B. dorsalis from both localities, and there were generally high levels of hybrid viability and survival resulting from parental and F1 crosses. Furthermore, all but one hybrid cross resulted in equal sex ratios, with the single deviation in favor of males and contrary to expectations under Haldane's rule. These data support the hypothesis that B. dorsalis and B. invadens represent the same biological species, an outcome that poses significant implications for pest management and international trade for sub-Saharan Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elucidating the nature of genetic variation underlying both sexually selected traits and the fitness components of sexual selection is essential to understanding the broader consequences of sexual selection as an evolutionary process. To date, there have been relatively few attempts to connect the genetic variance in sexually selected traits with segregating DNA sequence polymorphisms. We set out to address this in a well-characterized sexual selection system - the cuticular hydrocarbons (CHCs) of Drosophila serrata - using an indirect association study design that allowed simultaneous estimation of the genetic variance in CHCs, sexual fitness and single nucleotide polymorphism (SNP) effects in an outbred population. We cloned and sequenced an ortholog of the D. melanogaster desaturase 2 gene, previously shown to affect CHC biosynthesis in D. melanogaster, and associated 36 SNPs with minor allele frequencies > 0.02 with variance in CHCs and sexual fitness. Three SNPs had significant multivariate associations with CHC phenotype (q-value < 0.05). At these loci, minor alleles had multivariate effects on CHCs that were weakly associated with the multivariate direction of sexual selection operating on these traits. Two of these SNPs had pleiotropic associations with male mating success, suggesting these variants may underlie responses to sexual selection due to this locus. There were 15 significant male mating success associations (q-value < 0.1), and interestingly, we detected a nonrandom pattern in the relationship between allele frequency and direction of effect on male mating success. The minor-frequency allele usually reduced male mating success, suggesting a positive association between male mating success and total fitness at this locus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Choosing a mate is one of the largest (economic) decisions humans make. This thesis investigates this large scale decision and how the process is changing with the advent of the internet and the growing market for online informal sperm donation. This research identifies individual factors that influence female mating preferences. It explores the roles of behavioural traits and physical appearance, preferences for homogamy and hypergamy, and personality, and how these impact the decision to choose a donor. Overall, this thesis makes contributions to both the literature on human behaviour, and that on decision-making in extreme and highly important situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Males of some species included in the Bactrocera dorsalis complex are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl) benzene), a natural compound occurring in a variety of plant species. ME feeding of males of the B. dorsalis complex is known to enhance their mating competitiveness. Within B. dorsalis, recent studies show that Asian and African populations of B. dorsalis are sexually compatible, while populations of B. dorsalis and Bactrocera carambolae are relatively incompatible. The objectives of this study were to examine whether ME feeding by males affects mating compatibility between Asian and African populations of B. dorsalis and ME feeding reduces male mating incompatibility between B. dorsalis (Asian population) and B. carambolae. The data confirmed that Asian and African populations of B. dorsalis are sexually compatible for mating and showed that ME feeding only increased the number of matings. Though ME feeding also increased the number of matings of B. dorsalis (Asian population) and B. carambolae males but the sexual incompatibility between both species was not reduced by treatment with ME. These results conform to the efforts resolving the biological species limits among B. dorsalis complex and have implications for fruit fly control programs in fields and horticultural trade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory-reared insects are widely known to have significantly reduced genetic diversity in comparison to wild populations; however, subtle behavioural changes between laboratory-adapted and wild or ‘wildish’ (i.e., within one or very few generations of field collected material) populations are less well understood. Quantifying alterations in behaviour, particularly sexual, in laboratory-adapted insects is important for mass-reared insects for use in pest management strategies, especially those that have a sterile insect technique component. We report subtle changes in sexual behaviour between ‘wildish’ Bactrocera dorsalis flies (F1 and F2) from central and southern Thailand and the same colonies 12 months later when at six generations from wild. Mating compatibility tests were undertaken under standardised semi-natural conditions, with number of homo/heterotypic couples and mating location in field cages analysed via compatibility indices. Central and southern populations of B. dorsalis displayed positive assortative mating in the 2010 trials but mated randomly in the 2011 trials. ‘Wildish’ southern Thailand males mated significantly earlier than central Thailand males in 2010; this difference was considerably reduced in 2011, yet homotypic couples from southern Thailand still formed significantly earlier than all other couple combinations. There was no significant difference in couple location in 2010; however, couple location significantly differed among pair types in 2011 with those involving southern Thailand females occurring significantly more often on the tree relative to those with central Thailand females. Relative participation also changed with time, with more southern Thailand females forming couples relative to central Thailand females in 2010; this difference was considerably decreased by 2011. These results reveal how subtle changes in sexual behaviour, as driven by laboratory rearing conditions, may significantly influence mating behaviour between laboratory-adapted and recently colonised tephritid fruit flies over a relatively short period of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frugivorous 'true' fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a non-resourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: - (i) mating pairs were aggregated or non-aggregated; - (ii) mating system was resource or non-resource based; - (iii) flies utilised possible landmarks (tall trees over short) as mate-rendezvous sites, and; - (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: - (i) mating pairs were aggregated; - (ii) mating nearly always occurred in tall trees over short; - (iii) mating was non-resource based, and; - (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behaviour align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a non-resource based, aggregation system for which we also have evidence that land-marking may be involved. This article is protected by copyright. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diachasmimorpha kraussii (Hymenoptera: Braconidae: Opiinae) is a koinobiont larval parasitoid of dacine fruit flies of the genus Bactrocera (Diptera: Tephritidae) in its native range (Australia, Papua New Guinea, Solomon Islands). The wasp is a potentially important control agent for pest fruit flies, having been considered for both classical and inundative biological control releases. I investigated the host searching, selection and utilisation mechanisms of the wasp against native host flies within its native range (Australia). Such studies are rare in opiine research where the majority of studies, because of the applied nature of the research, have been carried out using host flies and environments which are novel to the wasps. Diachasmimorpha kraussii oviposited equally into maggots of four fruit fly species, all of which coexist with the wasp in its native range (Australia), when tested in a choice trial using a uniform artificial diet media. While eggs laid into Bactrocera tryoni and B. jarvisi developed successfully through to adult wasps, eggs laid into B. cucumis and B. cacuminata were encapsulated. These results suggest that direct larval cues are not an important element in host selection by D. kraussii. Further exploring how D. kraussii locates suitable host larvae, I investigated the role of plant cues in host searching and selection. This was examined in a laboratory choice trial using uninfested fruit or fruit infested with either B. tryoni or B. jarvisi maggots. The results showed a consistent preference ranking among infested fruits by the wasp, with guava and peach most preferred, but with no response to uninfested fruits. Thus, it appears the wasp uses chemical cues emitted in response to fruit fly larval infestation for host location, but does not use cues from uninfested fruits. To further tease apart the role of (i) suitable and non-suitable maggots, (ii) infested and uninfested fruits of different plant species, and (iii) adult flies, in wasp host location and selection, I carried out a series of behavioural tests where I manipulated these attributes in a field cage. These trials confirmed that D. kraussii did not respond to cues in uninfested fruits, that there were consistent preferences by the wasps for different maggot infested fruits, that fruit preference did not vary depending on whether the maggots were physiologically suitable or not suitable for wasp offspring development, and finally, that adult flies appear to play a secondary role as indicators of larval infestation. To investigate wasp behaviour in an unrestrained environment, I concurrently observed diurnal foraging behaviours of both the wasp and one of its host fly in a small nectarine orchard. Wasp behaviour, both spatially and temporally, was not correlated with adult fruit fly behaviour or abundance. This study reinforced the point that infested fruit seems to be the primary cue used by foraging wasps. Wasp and fly feeding and mating was not observed in the orchard, implying these activities are occurring elsewhere. It is highly unlikely that these behaviours were happening within the orchard during the night as both insects are diurnal. As the final component of investigating host location, I carried out a habitat preference study for the wasp at the landscape scale. Using infested sentinel fruits, I tested the parasitism rate of B. tryoni in eucalyptus sclerophyll forest, rainforest and suburbia in South East Queensland. Although, rainforest is the likely endemic habitat of both B. tryoni and D. kraussii, B. tryoni abundance is significantly greater in suburban environments followed by eucalyptus sclerophyll forest. Parasitism rate was found to be higher in suburbia than in the eucalyptus sclerophyll forest, while no parasitism was recorded in the rainforest. This result suggests that wasps orient within the landscape towards areas of high host density and are not restricted by habitat types. Results from the different experiments suggest that host searching, selection and utilisation behaviour of D. kraussii are strongly influenced by cues associated with fruit fly larval feeding. Cues from uninfested fruits, the host larvae themselves, and the adult host flies play minimal roles. The discussion focuses on the fit of D. kraussii to Vinson’s classical parasitoid host location model and the implications of results for biological control, including recommendations for host and plant preference screening protocols and release regimes.