32 resultados para Lipid-lowering
Resumo:
Background: Inflammation and biomechanical factors have been associated with the development of vulnerable atherosclerotic plaques. Lipid-lowering therapy has been shown to be effective in stabilizing them by reducing plaque inflammation. Its effect on arterial wall strain, however, remains unknown. The aim of the present study was to investigate the role of high- and low-dose lipid-lowering therapy using an HMG-CoA reductase inhibitor, atorvastatin, on arterial wall strain. Methods and Results: Forty patients with carotid stenosis >40% were successfully followed up during the Atorvastatin Therapy: Effects on Reduction Of Macrophage Activity (ATHEROMA; ISRCTN64894118) Trial. All patients had plaque inflammation as shown by intraplaque accumulation of ultrasmall super paramagnetic particles of iron oxide on magnetic resonance imaging at baseline. Structural analysis was performed and change of strain was compared between high- and low-dose statin at 0 and 12 weeks. There was no significant difference in strain between the 2 groups at baseline (P=0.6). At 12 weeks, the maximum strain was significantly lower in the 80-mg group than in the 10-mg group (0.085±0.033 vs. 0.169±0.084; P=0.001). A significant reduction (26%) of maximum strain was observed in the 80-mg group at 12 weeks (0.018±0.02; P=0.01). Conclusions: Aggressive lipid-lowering therapy is associated with a significant reduction in arterial wall strain. The reduction in biomechanical strain may be associated with reductions in plaque inflammatory burden.
Resumo:
Objectives: The aim of this study was to evaluate the effects of low-dose (10 mg) and high-dose (80 mg) atorvastatin on carotid plaque inflammation as determined by ultrasmall superparamagnetic iron oxide (USPIO)-enhanced carotid magnetic resonance imaging (MRI). The hypothesis was that treatment with 80 mg atorvastatin would demonstrate quantifiable changes in USPIO-enhanced MRI-defined inflammation within the first 3 months of therapy. Background: Preliminary studies indicate that USPIO-enhanced MRI can identify macrophage infiltration in human carotid atheroma in vivo and hence may be a surrogate marker of plaque inflammation. Methods: Forty-seven patients with carotid stenosis >40% on duplex ultrasonography and who demonstrated intraplaque accumulation of USPIO on MRI at baseline were randomly assigned in a balanced, double-blind manner to either 10 or 80 mg atorvastatin daily for 12 weeks. Baseline statin therapy was equivalent to 10 mg of atorvastatin or less. The primary end point was change from baseline in signal intensity (ΔSI) on USPIO-enhanced MRI in carotid plaque at 6 and 12 weeks. Results: Twenty patients completed 12 weeks of treatment in each group. A significant reduction from baseline in USPIO-defined inflammation was observed in the 80-mg group at both 6 weeks (ΔSI 0.13; p = 0.0003) and at 12 weeks (ΔSI 0.20; p < 0.0001). No difference was observed with the low-dose regimen. The 80-mg atorvastatin dose significantly reduced total cholesterol by 15% (p = 0.0003) and low-density lipoprotein cholesterol by 29% (p = 0.0001) at 12 weeks. Conclusions: Aggressive lipid-lowering therapy over a 3-month period is associated with significant reduction in USPIO-defined inflammation. USPIO-enhanced MRI methodology may be a useful imaging biomarker for the screening and assessment of therapeutic response to "anti-inflammatory" interventions in patients with atherosclerotic lesions. (Effects of Atorvastatin on Macrophage Activity and Plaque Inflammation Using Magnetic Resonance Imaging [ATHEROMA]; NCT00368589).
Resumo:
Background Epidemiological and clinical studies suggest comorbidity between prostate cancer (PCA) and cardiovascular disease (CVD) risk factors. However, the relationship between these two phenotypes is still not well understood. Here we sought to identify shared genetic loci between PCA and CVD risk factors. Methods We applied a genetic epidemiology method based on conjunction false discovery rate (FDR) that combines summary statistics from different genome-wide association studies (GWAS), and allows identification of genetic overlap between two phenotypes. We evaluated summary statistics from large, multi-centre GWA studies of PCA (n = 50 000) and CVD risk factors (n = 200 000) [triglycerides (TG), low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol, systolic blood pressure, body mass index, waist-hip ratio and type 2 diabetes (T2D)]. Enrichment of single nucleotide polymorphisms (SNPs) associated with PCA and CVD risk factors was assessed with conditional quantile-quantile plots and the Anderson-Darling test. Moreover, we pinpointed shared loci using conjunction FDR. Results We found the strongest enrichment of P-values in PCA was conditional on LDL and conditional on TG. In contrast, we found only weak enrichment conditional on HDL or conditional on the other traits investigated. Conjunction FDR identified altogether 17 loci; 10 loci were associated with PCA and LDL, 3 loci were associated with PCA and TG and additionally 4 loci were associated with PCA, LDL and TG jointly (conjunction FDR < 0.01). For T2D, we detected one locus adjacent to HNF1B. Conclusions We found polygenic overlap between PCA predisposition and blood lipids, in particular LDL and TG, and identified 17 pleiotropic gene loci between PCA and LDL, and PCA and TG, respectively. These findings provide novel pathobiological insights and may have implications for trials using targeting lipid-lowering agents in a prevention or cancer setting.
Resumo:
Cholesterol-lowering treatment by statins is an important and costly issue; however, its role in stroke has not been well documented. The aim of the present study was to review literature and current practice regarding cholesterol-lowering treatment for stroke patients. A literature review was conducted on lipids in stroke and their management with both statins and diet, including the cost-effectiveness of medical nutrition therapy. Qualifying criteria and prescription procedures of the Pharmaceutical Benefits Scheme (PBS) were also reviewed. Data on lipid levels and statin prescriptions were analysed for 468 patients admitted to a stroke unit. The literature shows that management with both medication and diet can be effective, especially when combined; however, 60% of patients with an ischaemic event had fasting total cholesterol measures ≥4 mmol/L (n = 231), with only 52% prescribed statins on discharge (n = 120). Hypercholesterolaemia is an underdiagnosed and undertreated risk factor within the stroke population. It appears that the PBS has not kept pace with advances in the evidence in terms of statin use in the stroke population, and review is needed. The present review should address the qualifying criteria for the stroke population and recommendations on referral to dietitians for dietary advice. Cholesterol-lowering treatment for both stroke patients and the wider population is an area that needs awareness raising and review by the PBS, medical practitioners and dietitians. The role of dietary and pharmacological treatments needs to be clearly defined, including adjunct therapy, and the cost-effectiveness of medical nutrition therapy realised.
Resumo:
Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.
Resumo:
The development of vaccines to combat pathogens that infect across mucosal surfaces has been a major goal of vaccine research. Successful mucosal vaccination requires the co-administration of adjuvants that can overcome the state of immune tolerance normally associated with mucosal application of proteins. In the case of oral immunization, delivery systems are also required to protect vaccine antigens against destruction by gastric pH and digestive enzymes. Furthermore, adjuvants used for mucosal delivery must be free of neurotoxic effects like those induced by the commonly used experimental mucosal adjuvant cholera toxin. Maintenance of the "cold chain" is also essential for the effectiveness of any vaccine and adjuvants/delivery systems that enhance the stability of a vaccine would offer a significant advantage. Needle-free methods of vaccination that induce protective immunity at multiple mucosal surfaces are also desirable for rapid vaccination of large populations. In the present study we show that transcutaneous immunization (TCI) using Lipid C, a novel lipid-based matrix originally developed for oral immunization, containing soluble Helicobacter sonicate significantly reduces the gastric bacterial burden in mice following gastric challenge with live Helicobacter pylori. Protection is associated with the production of splenic gamma interferon and gastric IgA and was achieved without the co-administration of potent and potentially toxic adjuvants, although protection was further enhanced by inclusion of CpG-ODN and cholera toxin in the lipid delivery system.
Resumo:
The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.
Resumo:
Lipopolysaccharide-activated macrophages rapidly synthesize and secrete tumor necrosis factor α (TNFα) to prime the immune system. Surface delivery of membrane carrying newly synthesized TNFα is controlled and limited by the level of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin 4 and SNAP-23. Many functions in immune cells are coordinated from lipid rafts in the plasmamembrane, and we investigated a possible role for lipid rafts in TNFα trafficking and secretion. TNFα surface delivery and secretion were found to be cholesterol- dependent. Upon macrophage activation, syntaxin 4 was recruited to cholesterol-dependent lipid rafts, whereas its regulatory protein, Munc18c, was excluded from the rafts. Syntaxin 4 in activated macrophages localized to discrete cholesterol-dependent puncta on the plasmamembrane, particularly on filopodia. Imaging the early stages of TNFα surface distribution revealed these puncta to be the initial points of TNFα delivery. During the early stages of phagocytosis, syntaxin 4 was recruited to the phagocytic cup in a cholesterol dependent manner. Insertion of VAMP3-positive recycling endosome membrane is required for efficient ingestion of a pathogen. Without this recruitment of syntaxin 4, it is not incorporated into the plasma membrane, and phagocytosis is greatly reduced. Thus, relocation of syntaxin 4 into lipid rafts in macrophages is a critical and rate-limiting step in initiating an effective immune response.
Resumo:
Objective: Preclinical and clinical data suggest that lipid biology is integral to brain development and neurodegeneration. Both aspects are proposed as being important in the pathogenesis of schizophrenia. The purpose of this paper is to examine the implications of lipid biology, in particular the role of essential fatty acids (EFA), for schizophrenia. Methods: Medline databases were searched from 1966 to 2001 followed by the crosschecking of references. Results: Most studies investigating lipids in schizophrenia described reduced EFA, altered glycerophospholipids and an increased activity of a calcium-independent phospholipase A2 in blood cells and in post-mortem brain tissue. Additionally, in vivo brain phosphorus-31 Magnetic Resonance Spectroscopy (31P-MRS) demonstrated lower phosphomonoesters (implying reduced membrane precursors) in first- and multi-episode patients. In contrast, phosphodiesters were elevated mainly in first-episode patients (implying increased membrane breakdown products), whereas inconclusive results were found in chronic patients. EFA supplementation trials in chronic patient populations with residual symptoms have demonstrated conflicting results. More consistent results were observed in the early and symptomatic stages of illness, especially if EFA with a high proportion of eicosapentaenoic acid was used. Conclusion: Peripheral blood cell, brain necropsy and 31P-MRS analysis reveal a disturbed lipid biology, suggesting generalized membrane alterations in schizophrenia. 31P-MRS data suggest increased membrane turnover at illness onset and persisting membrane abnormalities in established schizophrenia. Cellular processes regulating membrane lipid metabolism are potential new targets for antipsychotic drugs and might explain the mechanism of action of treatments such as eicosapentaenoic acid.
Resumo:
13.1 Drugs for cardiac arrhythmias 13.1.1 Introduction to cardiac arrhythmias 13.1.2 Cardiac action potentials 13.1.3 Mechanisms of cardiac arrhythmias 13.1.3 Class I 13.1.4 Class II 13.1.5 Class III 12.1.6 Class IV 13.1.7 Amiodarone 13.1.8 Adenosine 13.2 Antithrombotic drugs 13.2.1 Thrombus formation 13.2.2 Platelet aggregation and anti-platelet drugs 13.2.3 Coagulation 13.2.4 Anticoagulants 13.2.5 Fibrinolysis and fibrinolytics 13.3. Lipid modulating drugs 13.3.1 Cholesterol 13.3.2 Statins 13.3.3 Fibric acid derivatives 13.3.4 Ezetimibe