846 resultados para LIFETIME DATA
Resumo:
Hazard and reliability prediction of an engineering asset is one of the significant fields of research in Engineering Asset Health Management (EAHM). In real-life situations where an engineering asset operates under dynamic operational and environmental conditions, the lifetime of an engineering asset can be influenced and/or indicated by different factors that are termed as covariates. The Explicit Hazard Model (EHM) as a covariate-based hazard model is a new approach for hazard prediction which explicitly incorporates both internal and external covariates into one model. EHM is an appropriate model to use in the analysis of lifetime data in presence of both internal and external covariates in the reliability field. This paper presents applications of the methodology which is introduced and illustrated in the theory part of this study. In this paper, the semi-parametric EHM is applied to a case study so as to predict the hazard and reliability of resistance elements on a Resistance Corrosion Sensor Board (RCSB).
Resumo:
Background Exercise referral schemes (ERS) aim to identify inactive adults in the primary care setting. The primary care professional refers the patient to a third party service, with this service taking responsibility for prescribing and monitoring an exercise programme tailored to the needs of the patient. This paper examines the cost-effectiveness of ERS in promoting physical activity compared with usual care in primary care setting. Methods A decision analytic model was developed to estimate the cost-effectiveness of ERS from a UK NHS perspective. The costs and outcomes of ERS were modelled over the patient's lifetime. Data were derived from a systematic review of the literature on the clinical and cost-effectiveness of ERS, and on parameter inputs in the modelling framework. Outcomes were expressed as incremental cost per quality-adjusted life-year (QALY). Deterministic and probabilistic sensitivity analyses investigated the impact of varying ERS cost and effectiveness assumptions. Sub-group analyses explored the cost-effectiveness of ERS in sedentary people with an underlying condition. Results Compared with usual care, the mean incremental lifetime cost per patient for ERS was £169 and the mean incremental QALY was 0.008, generating a base-case incremental cost-effectiveness ratio (ICER) for ERS at £20,876 per QALY in sedentary individuals without a diagnosed medical condition. There was a 51% probability that ERS was cost-effective at £20,000 per QALY and 88% probability that ERS was cost-effective at £30,000 per QALY. In sub-group analyses, cost per QALY for ERS in sedentary obese individuals was £14,618, and in sedentary hypertensives and sedentary individuals with depression the estimated cost per QALY was £12,834 and £8,414 respectively. Incremental lifetime costs and benefits associated with ERS were small, reflecting the preventative public health context of the intervention, with this resulting in estimates of cost-effectiveness that are sensitive to variations in the relative risk of becoming physically active and cost of ERS. Conclusions ERS is associated with modest increase in lifetime costs and benefits. The cost-effectiveness of ERS is highly sensitive to small changes in the effectiveness and cost of ERS and is subject to some significant uncertainty mainly due to limitations in the clinical effectiveness evidence base.
Resumo:
The ability to accurately predict the lifetime of building components is crucial to optimizing building design, material selection and scheduling of required maintenance. This paper discusses a number of possible data mining methods that can be applied to do the lifetime prediction of metallic components and how different sources of service life information could be integrated to form the basis of the lifetime prediction model
Resumo:
Real-World Data Mining Applications generally do not end up with the creation of the models. The use of the model is the final purpose especially in prediction tasks. The problem arises when the model is built based on much more information than that the user can provide in using the model. As a result, the performance of model reduces drastically due to many missing attributes values. This paper develops a new learning system framework, called as User Query Based Learning System (UQBLS), for building data mining models best suitable for users use. We demonstrate its deployment in a real-world application of the lifetime prediction of metallic components in buildings
Resumo:
Maintenance activities in a large-scale engineering system are usually scheduled according to the lifetimes of various components in order to ensure the overall reliability of the system. Lifetimes of components can be deduced by the corresponding probability distributions with parameters estimated from past failure data. While failure data of the components is not always readily available, the engineers have to be content with the primitive information from the manufacturers only, such as the mean and standard deviation of lifetime, to plan for the maintenance activities. In this paper, the moment-based piecewise polynomial model (MPPM) are proposed to estimate the parameters of the reliability probability distribution of the products when only the mean and standard deviation of the product lifetime are known. This method employs a group of polynomial functions to estimate the two parameters of the Weibull Distribution according to the mathematical relationship between the shape parameter of two-parameters Weibull Distribution and the ratio of mean and standard deviation. Tests are carried out to evaluate the validity and accuracy of the proposed methods with discussions on its suitability of applications. The proposed method is particularly useful for reliability-critical systems, such as railway and power systems, in which the maintenance activities are scheduled according to the expected lifetimes of the system components.
Resumo:
The three studies in this thesis focus on happiness and age and seek to contribute to our understanding of happiness change over the lifetime. The first study contributes by offering an explanation for what was evolving to a ‘stylised fact’ in the economics literature, the U-shape of happiness in age. No U-shape is evident if one makes a visual inspection of the age happiness relationship in the German socio-economic panel data, and, it seems counter-intuitive that we just have to wait until we get old to be happy. Eliminating the very young, the very old, and the first timers from the analysis did not explain away regression results supporting the U-shape of happiness in age, but fixed effect analysis did. Analysis revealed found that reverse causality arising from time-invariant individual traits explained the U-shape of happiness in age in the German population, and the results were robust across six econometric methods. Robustness was added to the German fixed effect finding by replicating it with the Australian and the British socio-economic panel data sets. During analysis of the German data an unexpected finding emerged, an exceedingly large negative linear effect of age on happiness in fixed-effect regressions. There is a large self-reported happiness decline by those who remain in the German panel. A similar decline over time was not evident in the Australian or the British data. After testing away age, time and cohort effects, a time-in-panel effect was found. Germans who remain in the panel for longer progressively report lower levels of happiness. Because time-in-panel effects have not been included in happiness regression specifications, our estimates may be biased; perhaps some economics of the happiness studies, that used German panel data, need revisiting. The second study builds upon the fixed-effect finding of the first study and extends our view of lifetime happiness to a cohort little visited by economists, children. Initial analysis extends our view of lifetime happiness beyond adulthood and revealed a happiness decline in adolescent (15 to 23 year-old) Australians that is twice the size of the happiness decline we see in older Australians (75 to 86 yearolds), who we expect to be unhappy due to declining income, failing health and the onset of death. To resolve a difference of opinion in the literature as to whether childhood happiness decreases, increases, or remains flat in age; survey instruments and an Internet-based survey were developed and used to collect data from four hundred 9 to 14 year-old Australian children. Applying the data to a Model of Childhood Happiness revealed that the natural environment life-satisfaction domain factor did not have a significant effect on childhood happiness. However, the children’s school environment and interactions with friends life-satisfaction domain factors explained over half a steep decline in childhood happiness that is three times larger than what we see in older Australians. Adding personality to the model revealed what we expect to see with adults, extraverted children are happier, but unexpectedly, so are conscientious children. With the steep decline in the happiness of young Australians revealed and explanations offered, the third study builds on the time-invariant individual trait finding from the first study by applying the Australian panel data to an Aggregate Model of Average Happiness over the lifetime. The model’s independent variable is the stress that arises from the interaction between personality and the life event shocks that affect individuals and peers throughout their lives. Interestingly, a graphic depiction of the stress in age relationship reveals an inverse U-shape; an inverse U-shape that looks like the opposite of the U-shape of happiness in age we saw in the first study. The stress arising from life event shocks is found to explain much of the change in average happiness over a lifetime. With the policy recommendations of economists potentially invoking unexpected changes in our lives, the ensuing stress and resulting (un)happiness warrant consideration before economists make policy recommendations.
Resumo:
Background: Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. Objectives: This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. Methods: We recruited 180 participants (73 males, 107 females) aged 18-83 years. Digital imaging of skin hyper-pigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. Results: There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. Conclusion: The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This research contributes to the field of customer equity by examining how important the strategy drivers of consumption and customer data management are in contributing to the value of the customer asset. A mixed methods approach focused on one sector: the Australian accommodation hotels. From this research, a deeper understanding of how to theorise, conceptualise and practice customer equity management has been achieved.
Resumo:
Recent data indicate that levels of overweight and obesity are increasing at an alarming rate throughout the world. At a population level (and commonly to assess individual health risk), the prevalence of overweight and obesity is calculated using cut-offs of the Body Mass Index (BMI) derived from height and weight. Similarly, the BMI is also used to classify individuals and to provide a notional indication of potential health risk. It is likely that epidemiologic surveys that are reliant on BMI as a measure of adiposity will overestimate the number of individuals in the overweight (and slightly obese) categories. This tendency to misclassify individuals may be more pronounced in athletic populations or groups in which the proportion of more active individuals is higher. This differential is most pronounced in sports where it is advantageous to have a high BMI (but not necessarily high fatness). To illustrate this point we calculated the BMIs of international professional rugby players from the four teams involved in the semi-finals of the 2003 Rugby Union World Cup. According to the World Health Organisation (WHO) cut-offs for BMI, approximately 65% of the players were classified as overweight and approximately 25% as obese. These findings demonstrate that a high BMI is commonplace (and a potentially desirable attribute for sport performance) in professional rugby players. An unanswered question is what proportion of the wider population, classified as overweight (or obese) according to the BMI, is misclassified according to both fatness and health risk? It is evident that being overweight should not be an obstacle to a physically active lifestyle. Similarly, a reliance on BMI alone may misclassify a number of individuals who might otherwise have been automatically considered fat and/or unfit.