248 resultados para Knee Osteoarthritis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Physical activity (PA) is recommended for managing osteoarthritis (OA). However, few people with OA are physically active. Understanding the factors associated with PA is necessary to increase PA in this population. This cross-sectional study examined factors associated with leisure-time PA, stretching exercises, and strengthening exercises in people with OA. Methods: For a mail survey, 485 individuals, aged 68.0 y (SD=10.6) with hip or knee OA, were asked about factors that may influence PA participation, including use of non-PA OA management strategies and both psychological and physical health-related factors. Associations between factors and each PA outcome were examined in multivariable logistic regression models. Results: Non-PA management strategies were the main factors associated with the outcomes. Information/education courses, heat/cold treatments, and paracetamol were associated with stretching and strengthening exercises (P<0.05). Hydrotherapy and magnet therapy were associated with leisure-time PA; using orthotics and massage therapy, with stretching exercises; and occupational therapy, with strengthening exercises (P<0.05). Few psychological or health15 related factors were associated with the outcomes. Conclusions: Some management strategies may make it easier for people with OA to be physically active, and could be promoted to encourage PA. Providers of strategies are potential avenues for recruiting people with OA into PA programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Impaired muscle function is common in knee osteoarthritis (OA). Numerous biochemical molecules have been implicated in the development of OA; however, these have only been identified in the joint and serum. This study compared the expression of interleukin (IL-15) and Forkhead box protein-O1 (FoxO1) in muscle of patients with knee OA asymptomatic individuals, and examined whether IL-15 was also present in the joint and serum. Method Muscle and blood samples were collected from 19 patients with diagnosed knee OA and 10 age-matched asymptomatic individuals. Synovial fluid and muscle biopsies were collected from the OA group during knee replacement surgery. IL-15 and FoxO1were measured in the skeletal muscle. IL-15 abundance was also analysed in the serum of both groups and synovial fluid from the OA group. Knee extensor strength was measured and correlated with IL-15 and FoxO1 in the muscle. Results FoxO1 protein expression was higher (p=0.04), whereas IL-15 expression was lower (p=0.02) in the muscle of the OA group. Strength was also lower in the OA group, and was inversely correlated with FoxO1 expression. No correlation was found between IL-15 in the joint, muscle or serum. Conclusion Skeletal muscle, particularly the quadriceps, is affected in people with knee OA where elevated FoxO1 protein expression was associated with reduced muscle strength. While IL-15 protein expression in the muscle was lower in the knee OA group, no correlation was found between the expression of IL-15 protein in the muscle, joint and serum, which suggests that inflammation is regulated differently within these tissues.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background Although there are recommendations for the management of osteoarthritis (OA), little is known about how people with OA actually manage this chronic condition. Purpose The aims of this study were to identify the non-pharmacological and pharmacological therapies most commonly used for the management of hip or knee OA, in a community-based sample of adults, and to compare these with evidence-based recommendations. Methods A questionnaire was mailed to 2200 adult members of Arthritis Queensland living in Brisbane, Australia. It included questions about OA symptoms, management therapies and demographic characteristics. Results Of the 485 participants (192 men, 293 women) with hip or knee OA who completed the questionnaire, most had mild to moderate symptoms. Ninety-six percent of participants (aged 27–95 years) reported using at least one non-pharmacological therapy, and 78% reported using at least one pharmacological therapy. The most common currently used non-pharmacological strategy was range-of-motion exercises (men 52%, women 61%, p=0.05) and the most common frequently used pharmacological strategy was glucosamine/chondroitin (men 51%, women 60%, ns). For the most highly recommended strategies, 65% of men and 54% of women had never attended an information/education course (p=0.04), and fewer than half (46% of women and 42% of men, p=0.03) were frequent users of anti-inflammatory agents. Conclusion The findings suggest that many people with knee or hip OA do not follow the most highly endorsed of the OARSI (Osteoarthritis Research Society International) recommendations for management of OA. Health professionals should be encouraged to recommend evidence-based therapies to their patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To compare measures of fat-free mass (FFM) by three different bioelectrical impedance analysis (BIA) devices and to assess the agreement between three different equations validated in older adult and/or overweight populations. Design: Cross-sectional study. Setting: Orthopaedics ward of Brisbane public hospital, Australia. Participants: Twenty-two overweight, older Australians (72 yr ± 6.4, BMI 34 kg/m2 ± 5.5) with knee osteoarthritis. Measurements: Body composition was measured using three BIA devices: Tanita 300-GS (foot-to-foot), Impedimed DF50 (hand-to-foot) and Impedimed SFB7 (bioelectrical impedance spectroscopy (BIS)). Three equations for predicting FFM were selected based on their ability to be applied to an older adult and/ or overweight population. Impedance values were extracted from the hand-to-foot BIA device and included in the equations to estimate FFM. Results: The mean FFM measured by BIS (57.6 kg ± 9.1) differed significantly from those measured by foot-to-foot (54.6 kg ± 8.7) and hand-to-foot BIA (53.2 kg ± 10.5) (P < 0.001). The mean ± SD FFM predicted by three equations using raw data from hand-to-foot BIA were 54.7 kg ± 8.9, 54.7 kg ± 7.9 and 52.9 kg ± 11.05 respectively. These results did not differ from the FFM predicted by the hand-to-foot device (F = 2.66, P = 0.118). Conclusions: Our results suggest that foot-to-foot and hand-to-foot BIA may be used interchangeably in overweight older adults at the group level but due to the large limits of agreement may lead to unacceptable error in individuals. There was no difference between the three prediction equations however these results should be confirmed within a larger sample and against a reference standard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Researchers have postulated that reduced hip-abductor muscle strength may have a role in the progression of knee osteoarthritis by increasing the external knee-adduction moment. However, the relationship between hip-abductor strength and frontal-plane biomechanics remains unclear. To experimentally reduce hip-abduction strength and observe the subsequent changes in frontal-plane biomechanics. Descriptive laboratory study. Research laboratory. Eight healthy, recreationally active men (age = 27 ± 6 years, height = 1.75 ± 0.11 m, mass = 76.1 ± 10.0 kg). All participants underwent a superior gluteal nerve block injection to reduce the force output of the hip-abductor muscle group. Maximal isometric hip-abduction strength and gait biomechanical data were collected before and after the injections. Gait biomechanical variables collected during walking consisted of knee- and hip-adduction moments and impulses and the peak angles of contralateral pelvic drop, hip adduction, and ipsilateral trunk lean. Hip-abduction strength was reduced after the injection (P = .001) and remained lower than baseline values at the completion of the postinjection gait data collection (P = .02). No alterations in hip- or knee-adduction moments (hip: P = .11; knee: P = .52) or impulses (hip: P = .16; knee: P = .41) were found after the nerve block. Similarly, no changes in angular kinematics were observed for contralateral pelvic drop (P = .53), ipsilateral trunk lean (P = .78), or hip adduction (P = .48). A short-term reduction in hip-abductor strength was not associated with alterations in the frontal-plane gait biomechanics of young, healthy men. Further research is needed to determine whether a similar relationship is true in older adults with knee osteoarthritis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteophytes form through the process of chondroid metamorphosis of fibrous tissue followed by endochondral ossification. Osteophytes have been found to consist of three different mesenchymal tissue regions including endochondral bone formation within cartilage residues, intra-membranous bone formation within fibrous tissue and bone formation within bone marrow spaces. All these features provide evidence of mesenchymal stem cells (MSC) involvement in osteophyte formation; nevertheless, it remains to be characterised. MSC from numerous mesenchymal tissues have been isolated but bone marrow remains the “ideal” due to the ease of ex vivo expansion and multilineage potential. However, the bone marrow stroma has a relatively low number of MSC, something that necessitates the need for long-term culture and extensive population doublings in order to obtain a sufficient number of cells for therapeutic applications. MSC in vitro have limited proliferative capacity and extensive passaging compromises differentiation potential. To overcome this barrier, tissue derived MSC are of strong interest for extensive study and characterisation, with a focus on their potential application in therapeutic tissue regeneration. To date, no MSC type cell has been isolated from osteophyte tissue, despite this tissue exhibiting all the hallmark features of a regenerative tissue. Therefore, this study aimed to isolate and characterise cells from osteophyte tissues in relation to their phenotype, differentiation potential, immuno-modulatory properties, proliferation, cellular ageing, longevity and chondrogenesis in in vitro defect model in comparison to patient matched bone marrow stromal cells (bMSC). Osteophyte derived cells were isolated from osteophyte tissue samples collected during knee replacement surgery. These cells were characterised by the expression of cell surface antigens, differentiation potential into mesenchymal lineages, growth kinetics and modulation of allo-immune responses. Multipotential stem cells were identified from all osteophyte samples namely osteophyte derived mesenchymal stem cells (oMSC). Extensively expanded cell cultures (passage 4 and 9 respectively) were used to confirm cytogenetic stability and study signs of cellular aging, telomere length and telomerase activity. Cultured cells at passage 4 were used to determine 84 pathway focused stem cell related gene expression profile. Micro mass pellets were cultured in chondrogenic differentiation media for 21 days for phenotypic and chondrogenic related gene expression. Secondly, cell pellets differentiated overnight were placed into articular cartilage defects and cultured for further 21 days in control medium and chondrogenic medium to study chondrogenesis and cell behaviour. The surface antigen expression of oMSC was consistent with that of mesenchymal stem cells, such as lacking the haematopoietic and common leukocyte markers (CD34, CD45) while expressing those related to adhesion (CD29, CD166, CD44) and stem cells (CD90, CD105, CD73). The proliferation capacity of oMSC in culture was superior to that of bMSC, and they readily differentiated into tissues of the mesenchymal lineages. oMSC also demonstrated the ability to suppress allogeneic T-cell proliferation, which was associated with the expression of tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO). Cellular aging was more prominent in late passage bMSC than in oMSC. oMSC had longer telomere length in late passages compared with bMSC, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSC and not in bMSC. In osteophyte tissues telomerase positive cells were found to be located peri vascularly and were Stro-1 positive. Eighty-four pathway-focused genes were investigated and only five genes (APC, CCND2, GJB2, NCAM and BMP2) were differentially expressed between bMSC and oMSC. Chondrogenically induced micro mass pellets of oMSC showed higher staining intensity for proteoglycans, aggrecan and collagen II. Differential expression of chondrogenic related genes showed up regulation of Aggrecan and Sox 9 in oMSC and collagen II in bMSC. The in vitro defect models of oMSC in control medium showed rounded and aggregated cells staining positively for proteoglycan and presence of some extracellular matrix. In contrast, defects with bMSC showed fragmentation and loss of cells, fibroblast-like cell morphology staining positively for proteoglycans. For defects maintained in chondrogenic medium, rounded, aggregated and proteoglycan positive cells were found in both oMSC and bMSC cultures. Extracellular matrix and cellular integration into newly formed matrix was evident only in oMSC defects. For analysis of chondrocyte hypertrophy, strong expression of type X collagen could be noticed in the pellet cultures and transplanted bMSC. In summary, this study demonstrated that osteophyte derived cells had similar properties to mesenchymal stem cells in the expression of antigen phenotype, differential potential and suppression of allo-immune response. Furthermore, when compared to bMSC, oMSC maintained a higher proliferative capacity due to a retained level of telomerase activity in vitro, which may account for the relatively longer telomeres delaying growth arrest by replicative senescence compared with bMSC. oMSC behaviour in defects supported chondrogenesis which implies that cells derived from regenerative tissue can be an alternative source of stem cells and have a potential clinical application for therapeutic stem cell based tissue regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To evaluate the validity, reliability and responsiveness of EDC using the WOMAC® NRS 3.1 Index on Motorola V3 mobile phones. ---------- Methods: Patients with osteoarthritis (OA) undergoing primary unilateral hip or knee joint replacement surgery were assessed pre-operatively and 3-4 months post-operatively. Patients completed the WOMAC® Index in paper (p-WOMAC®) and electronic (m-WOMAC®) format in random order. ---------- Results: 24 men and 38 women with hip and knee OA participated and successfully completed the m-WOMAC® questionnaire. Pearson correlations between the summated total index scores for the p-WOMAC® and m-WOMAC® pre- and post-surgery were 0.98 and 0.99 (p<0.0001). There was no clinically important or statistically significant between-method difference in the adjusted total summated scores, pre- and post-surgery (adjusted mean difference = 4.44, p = 0.474 and 1.73, p = 0.781). Internal consistency estimates of m-WOMAC® reliability were 0.87 – 0.98. The m-WOMAC® detected clinically important, statistically significant (p<0.0001) improvements in pain, stiffness, function and total index score. ---------- Conclusions: Sixty-two patients with hip and knee OA successfully completed EDC by Motorola V3 mobile phone using the m-WOMAC® NRS3.1 Index; completion times averaging only 1-1.5 minutes longer than the p-WOMAC® Index. Data were successfully and securely transmitted from patients in Australia to a server in the USA. There was close agreement and no significant differences between m-WOMAC® and p-WOMAC® scores. This study confirms the validity, reliability and responsiveness of the Exco InTouch engineered, Java-based m-WOMAC® Index application. EDC with the m-WOMAC® Index provides unique opportunities for using quantitative measurement in clinical research and practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Management of osteoarthritis (OA) includes the use of non-pharmacological and pharmacological therapies. Although walking is commonly recommended for reducing pain and increasing physical function in people with OA, glucosamine sulphate has also been used to alleviate pain and slow the progression of OA. This study evaluated the effects of a progressive walking program and glucosamine sulphate intake on OA symptoms and physical activity participation in people with mild to moderate hip or knee OA. Methods: Thirty-six low active participants (aged 42 to 73 years) were provided with 1500 mg glucosamine sulphate per day for 6 weeks, after which they began a 12-week progressive walking program, while continuing to take glucosamine. They were randomized to walk 3 or 5 days per week and given a pedometer to monitor step counts. For both groups, step level of walking was gradually increased to 3000 steps/day during the first 6 weeks of walking, and to 6000 steps/day for the next 6 weeks. Primary outcomes included physical activity levels, physical function (self-paced step test), and the WOMAC Osteoarthritis Index for pain, stiffness and physical function. Assessments were conducted at baseline and at 6-, 12-, 18-, and 24-week follow-ups. The Mann Whitney Test was used to examine differences in outcome measures between groups at each assessment, and the Wilcoxon Signed Ranks Test was used to examine differences in outcome measures between assessments. Results: During the first 6 weeks of the study (glucosamine supplementation only), physical activity levels, physical function, and total WOMAC scores improved (P<0.05). Between the start of the walking program (Week 6) and the final follow-up (Week 24), further improvements were seen in these outcomes (P<0.05) although most improvements were seen between Weeks 6 and 12. No significant differences were found between walking groups. Conclusions: In people with hip or knee OA, walking a minimum of 3000 steps (~30 minutes), at least 3 days/week, in combination with glucosamine sulphate, may reduce OA symptoms. A more robust study with a larger sample is needed to support these preliminary findings. Trial Registration: Australian Clinical Trials Registry ACTRN012607000159459.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The aim of this study was to test the possible involvement, relevance and significance of dentin matrix protein 1 (DMP1) in chondrocyte redifferentiation and OA. Methods To examine the function of DMP1 in vitro, bone marrow stromal cells (BMSCs) and articular chondrocytes (ACs) were isolated and differentiated in micromasses in the presence or absence of DMP1 small interfering RNA and analysed for chondrogenic phenotype. The association of DMP1 expression with OA progression was analysed time dependently in the OA menisectomy rat model and in grade-specific OA human samples. Results It was found that DMP1 was strongly related to chondrogenesis, which was evidenced by the strong expression of DMP1 in the 14.5-day mouse embryonic cartilage development stage and in femoral heads of post-natal days 0 and 4. In vitro chondrogenesis in BMSCs and ACs was accompanied by a gradual increase in DMP1 expression at both the gene and protein levels. In addition, knockdown of DMP1 expression led to decreased chondrocyte marker genes, such as COL2A1, ACAN and SOX9, and an increase in the expression of COL10A and MMP13 in ACs. Moreover, treatment with IL-1β, a well-known catabolic culprit of proteoglycan matrix loss, significantly reduced the expression of DMP1. Furthermore, we also observed the suppression of DMP1 protein in a grade-specific manner in knee joint samples from patients with OA. In the menisectomy-induced OA model, an increase in the Mankin score was accompanied by the gradual loss of DMP1 expression. Conclusion Observations from this study suggest that DMP1 may play an important role in maintaining the chondrogenic phenotype and its possible involvement in altered cartilage matrix remodelling and degradation in disease conditions like OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Patella resurfacing in total knee arthroplasty is a contentious issue. The literature suggests that resurfacing of the patella is based on surgeon preference, and little is known about the role and timing of resurfacing and how this affects outcomes. Methods We analyzed 134,799 total knee arthroplasties using data from the Australian Orthopaedic Association National Joint Replacement Registry. Hazards ratios (HRs) were used to compare rates of early revision between patella resurfacing at the primary procedure (the resurfacing group, R) and primary arthroplasty without resurfacing (no-resurfacing group, NR). We also analyzed the outcomes of NR that were revised for isolated patella addition. Results At 5 years, the R group showed a lower revision rate than the NR group: cumulative per cent revision (CPR) 3.1% and 4.0%, respectively (HR = 0.75, p < 0.001). Revisions for patellofemoral pain were more common in the NR group (17%) than in the R group (1%), and “patella only” revisions were more common in the NR group (29%) than in the R group (6%). Non-resurfaced knees revised for isolated patella addition had a higher revision rate than patella resurfacing at the primary procedure, with a 4-year CPR of 15% and 2.8%, respectively (HR = 4.1, p < 0.001). Interpretation Rates of early revision of primary total knees were higher when the patella was not resurfaced, and suggest that surgeons may be inclined to resurface later if there is patellofemoral pain. However, 15% of non-resurfaced knees revised for patella addition are re-revised by 4 years. Our results suggest an early beneficial outcome for patella resurfacing at primary arthroplasty based on revision rates up to 5 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritis (OA) is the most common musculoskeletal disorder and represents a major health burden to society. In the course of the pathological development of OA, articular cartilage chondrocytes (ACCs) undergo atypical phenotype changes characterized by the expression of hypertrophic differentiation markers. Also, the adjacent subchondral bone shows signs of abnormal mineral density and enhanced production of bone turnover markers, indicative of osteoblast dysfunction. Collectively these findings indicate that the pathological changes typical of OA, involve alterations of the phenotypic properties of cells in both the subchondral bone and articular cartilage. However, the mechanism(s) by which these changes occur during OA development are not completely understood. The purpose of this project was to address the question of how subchondral bone osteoblasts (SBOs) and ACCs interact with each other with respect to regulation of respective cells’ phenotypic properties and in particular the involvement of mitogen activated protein kinase (MAPK) signalling pathways under normal and OA joint condition. We also endeavoured to test the influence of cross-talk between SBOs and ACCs isolated from normal and OA joint on matrix metalloproteinase (MMP) expression. For this purpose tissues from the knees of OA patients and normal controls were collected to isolate SBOs and ACCs. The cellular cross-talk of SBOs and ACCs were studied by means of both direct and indirect co-culture systems, which made it possible to identify the role of both membrane bound and soluble factors. Histology, immunohistochemistry, qRT-PCR, zymography, ELISA and western blotting were some of the techniques applied to distinguish the changes in the co-cultured vs. non co-cultured cells. The MAPK signalling pathways were probed by using targeted MAPK inhibitors, and their activity monitored by western blot analysis using phospho MAPK specific antibodies. Our co-culture studies demonstrated that OA ACCs enhanced the SBOs differentiation compared to normal ACCs. We demonstrated that OA ACCs induced these phenotypic changes in the SBOs via activating an ERK1/2 signalling pathway. The findings from this study thus provided clear evidence that OA ACCs play an integral role in altering the SBO phenotype. In the second study, we tested the influence of normal SBOs and OA SBOs on ACCs phenotype changes. The results showed that OA SBOs increased the hypertrophic gene expression in co-cultured ACCs compared to normal SBOs, a phenotype which is considered as pathological to the health and integrity of articular cartilage. It was demonstrated that these phenotype changes occurred via de-activation of p38 and activation of ERK1/2 signaling pathways. These findings suggest that the pathological interaction of OA SBOs with ACCs is mediated by cross-talking between ERK1/2 and p38 pathways, resulting in ACCs undergoing hypertrophic differentiation. Subsequent experiments to determine the effect on MMP regulation, of SBOs and ACCs cross-talk, revealed that co-culturing OA SBOs with ACCs significantly enhanced the proteolytic activity and expression of MMP-2 and MMP-9. In turn, co-culture of OA ACCs with SBOs led to abundant MMP-2 expression in SBOs. Furthermore, we showed that the addition of ERK1/2 and JNK inhibitors reversed the elevated MMP-2 and MMP-9 production which otherwise resulted from the interactions of OA SBOs-ACCs. Thus, this study has demonstrated that the altered interactions between OA SBOs-ACCs are capable of triggering the pathological pathways leading to degenerative changes seen in the osteoarthritic joint. In conclusion, the body of work presented in this dissertation has given clear in vitro evidence that the altered bi-directional communication of SBOs and ACCs may play a role in OA development and that this process was mediated by MAPK signalling pathways. Targeting these altered interactions by the use of MAPK inhibitors may provide the scientific rationale for the development of novel therapeutic strategies in the treatment and management of OA.