563 resultados para Iterative methods (Mathematics)
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
In this paper we propose a new method for face recognition using fractal codes. Fractal codes represent local contractive, affine transformations which when iteratively applied to range-domain pairs in an arbitrary initial image result in a fixed point close to a given image. The transformation parameters such as brightness offset, contrast factor, orientation and the address of the corresponding domain for each range are used directly as features in our method. Features of an unknown face image are compared with those pre-computed for images in a database. There is no need to iterate, use fractal neighbor distances or fractal dimensions for comparison in the proposed method. This method is robust to scale change, frame size change and rotations as well as to some noise, facial expressions and blur distortion in the image
Resumo:
Glass Pond is an interactive artwork designed to engender exploration and reflection through an intuitive, tangible interface and a simulation agent. It is being developed using iterative methods. A study has been conducted with the aim of illuminating user experience, interface, design, and performance issues.The paper describes the study methodology and process of data analysis including coding schemes for cognitive states and movements. Analysis reveals that exploration and reflection occurred as well as composing behaviours (unexpected). Results also show that participants interacted to varying degrees. Design discussion includes the artwork's (novel) interface and configuration.
Resumo:
This study presents a general approach to identify dominant oscillation modes in bulk power system by using wide-area measurement system. To automatically identify the dominant modes without artificial participation, spectral characteristic of power system oscillation mode is applied to distinguish electromechanical oscillation modes which are calculated by stochastic subspace method, and a proposed mode matching pursuit is adopted to discriminate the dominant modes from the trivial modes, then stepwise-refinement scheme is developed to remove outliers of the dominant modes and the highly accurate dominant modes of identification are obtained. The method is implemented on the dominant modes of China Southern Power Grid which is one of the largest AC/DC paralleling grids in the world. Simulation data and field-measurement data are used to demonstrate high accuracy and better robustness of the dominant modes identification approach.
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
This paper describes an approach to introducing fraction concepts using generic software tools such as Microsoft Office's PowerPoint to create "virtual" materials for mathematics teaching and learning. This approach replicates existing concrete materials and integrates virtual materials with current non-computer methods of teaching primary students about fractions. The paper reports a case study of a 12-year-old student, Frank, who had an extremely limited understanding of fractions. Frank also lacked motivation for learning mathematics in general and interacted with his peers in a negative way during mathematics lessons. In just one classroom session involving the seamless integration of off-computer and on-computer activities, Frank acquired a basic understanding of simple common equivalent fractions. Further, he was observed as the session progressed to be an enthusiastic learner who offered to share his learning with his peers. The study's "virtual replication" approach for fractions involves the manipulation of concrete materials (folding paper regions) alongside the manipulation of their virtual equivalent (shading screen regions). As researchers have pointed out, the emergence of new technologies does not mean old technologies become redundant. Learning technologies have not replaced print and oral language or basic mathematical understanding. Instead, they are modifying, reshaping, and blending the ways in which humankind speaks, reads, writes, and works mathematically. Constructivist theories of learning and teaching argue that mathematics understanding is developed from concrete to pictorial to abstract and that, ultimately, mathematics learning and teaching is about refinement and expression of ideas and concepts. Therefore, by seamlessly integrating the use of concrete materials and virtual materials generated by computer software applications, an opportunity arises to enhance the teaching and learning value of both materials.
Resumo:
In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.
ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.