120 resultados para Irrigation districts


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD study examines whether water allocation becomes more productive when it is re-allocated from 'low' to 'high' efficient alternative uses in village irrigation systems (VISs) in Sri Lanka. Reservoir-based agriculture is a collective farming economic activity, which inter-sectoral allocation of water is assumed to be inefficient due to market imperfections and weak user rights. Furthermore, the available literature shows that a „head-tail syndrome. is the most common issue for intra-sectoral water management in „irrigation. agriculture. This research analyses the issue of water allocation by using primary data collected from two surveys of 460 rice farmers and 325 fish farming groups in two administrative districts in Sri Lanka. Technical efficiency estimates are undertaken for both rice farming and culture-based fisheries (CBF) production. The equi-marginal principle is applied for inter and intra-sectoral allocation of water. Welfare benefits of water re-allocation are measured through consumer surplus estimation. Based on these analyses, the overall findings of the thesis can be summarised as follows. The estimated mean technical efficiency (MTE) for rice farming is 73%. For CBF production, the estimated MTE is 33%. The technical efficiency distribution is skewed to the left for rice farming, while it skewed to the right for CBF production. The results show that technical efficiency of rice farming can be improved by formalising transferability of land ownership and, therefore, water user rights by enhancing the institutional capacity of Farmer Organisations (FOs). Other effective tools for improving technical efficiency of CBF production are strengthening group stability of CBF farmers, improving the accessibility of official consultation, and attracting independent investments. Inter-sectoral optimal allocation shows that the estimated inefficient volume of water in rice farming, which can be re-allocated for CBF production, is 32%. With the application of successive policy instruments (e.g., a community transferable quota system and promoting CBF activities), there is potential for a threefold increase in marginal value product (MVP) of total reservoir water in VISs. The existing intra-sectoral inefficient volume of water use in tail-end fields and head-end fields can potentially be removed by reducing water use by 10% and 23% respectively and re-allocating this to middle fields. This re-allocation may enable a twofold increase in MVP of water used in rice farming without reducing the existing rice output, but will require developing irrigation practices to facilitate this re-allocation. Finally, the total productivity of reservoir water can be increased by responsible village level institutions and primary level stakeholders (i.e., co-management) sharing responsibility of water management, while allowing market forces to guide the efficient re-allocation decisions. This PhD has demonstrated that instead of farmers allocating water between uses haphazardly, they can now base their decisions on efficient water use with a view to increasing water productivity. Such an approach, no doubt will enhance farmer incomes and community welfare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plethora of literature exists on irrigation development. However, only a few studies analyse the distributional issues associated with irrigation induced technological changes (IITC) in the context of commodity markets. Furthermore, these studies deal with only the theoretical arguments and to date no proper investigation has been conducted to examine the long-term benefits of adopting modern irrigation technology. This study investigates the long-term benefit changes of irrigation induced technological changes using data from Sri Lanka with reference to rice farming. The results show that (1) adopting modern technology on irrigation increases the overall social welfare through consumption of a larger quantity at a lower cost (2) the magnitude, sensitivity and distributional gains depend on the price elasticity of demand and supply as well as the size of the marketable surplus (3) non-farm sector gains are larger than farm sector gains (4) the distribution of the benefits among different types of producers depend on the magnitude of the expansion of the irrigated areas as well as the competition faced by traditional farmers (5) selective technological adoption and subsidies have a detrimental effect on the welfare of other producers who do not enjoy the same benefits (6) the short-term distributional effects are more severe than the long-term effects among different groups of farmers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of the literature related to issues involved in irrigation induced agricultural development (IIAD) reveals that: (1) the magnitude, sensitivity and distribution of social welfare of IIAD is not fully analysed; (2) the impacts of excessive pesticide use on farmers’ health are not adequately explained; (3) no analysis estimates the relationship between farm level efficiency and overuse of agro-chemical inputs under imperfect markets; and (4) the method of incorporating groundwater extraction costs is misleading. This PhD thesis investigates these issues by using primary data, along with secondary data from Sri Lanka. The overall findings of the thesis can be summarised as follows. First, the thesis demonstrates that Sri Lanka has gained a positive welfare change as a result of introducing new irrigation technology. The change in the consumer surplus is Rs.48,236 million, while the change in the producer surplus is Rs. 14,274 millions between 1970 and 2006. The results also show that the long run benefits and costs of IIAD depend critically on the magnitude of the expansion of the irrigated area, as well as the competition faced by traditional farmers (agricultural crowding out effects). The traditional sector’s ability to compete with the modern sector depends on productivity improvements, reducing production costs and future structural changes (spillover effects). Second, the thesis findings on pesticides used for agriculture show that, on average, a farmer incurs a cost of approximately Rs. 590 to 800 per month during a typical cultivation period due to exposure to pesticides. It is shown that the value of average loss in earnings per farmer for the ‘hospitalised’ sample is Rs. 475 per month, while it is approximately Rs. 345 per month for the ‘general’ farmers group during a typical cultivation season. However, the average willingness to pay (WTP) to avoid exposure to pesticides is approximately Rs. 950 and Rs. 620 for ‘hospitalised’ and ‘general’ farmers’ samples respectively. The estimated percentage contribution for WTP due to health costs, lost earnings, mitigating expenditure, and disutility are 29, 50, 5 and 16 per cent respectively for hospitalised farmers, while they are 32, 55, 8 and 5 per cent respectively for ‘general’ farmers. It is also shown that given market imperfections for most agricultural inputs, farmers are overusing pesticides with the expectation of higher future returns. This has led to an increase in inefficiency in farming practices which is not understood by the farmers. Third, it is found that various groundwater depletion studies in the economics literature have provided misleading optimal water extraction quantity levels. This is due to a failure to incorporate all production costs in the relevant models. It is only by incorporating quality changes to quantity deterioration, that it is possible to derive socially optimal levels. Empirical results clearly show that the benefits per hectare per month considering both the avoidance costs of deepening agro-wells by five feet from the existing average, as well as the avoidance costs of maintaining the water salinity level at 1.8 (mmhos/Cm), is approximately Rs. 4,350 for farmers in the Anuradhapura district and Rs. 5,600 for farmers in the Matale district.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ambulance Ramping, defined anecdotally as a practice where patients brought to emergency departments by ambulance experience delays to admission, has become more frequent in Australian emergency departments over the last few years. Previous research has shown a link between emergency department overcrowding, ambulance diversion and adverse outcomes for patients. However, there is very little research about Ambulance Ramping. The literature has no consistent definition of Ambulance Ramping, no description of how it is managed, and limited research on the effects it has on patient and service delivery outcomes...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cotton is one of the most important irrigated crops in subtropical Australia. In recent years, cotton production has been severely affected by the worst drought in recorded history, with the 2007–08 growing season recording the lowest average cotton yield in 30 years. The use of a crop simulation model to simulate the long-term temporal distribution of cotton yields under different levels of irrigation and the marginal value for each unit of water applied is important in determining the economic feasibility of current irrigation practices. The objectives of this study were to: (i) evaluate the CROPGRO-Cotton simulation model for studying crop growth under deficit irrigation scenarios across ten locations in New South Wales (NSW) and Queensland (Qld); (ii) evaluate agronomic and economic responses to water inputs across the ten locations; and (iii) determine the economically optimal irrigation level. The CROPGRO-Cotton simulation model was evaluated using 2 years of experimental data collected at Kingsthorpe, Qld. The model was further evaluated using data from nine locations between northern NSW and southern Qld. Long-term simulations were based on the prevalent furrowirrigation practice of refilling the soil profile when the plant -available soil water content is<50%. The model closely estimated lint yield for all locations evaluated. Our results showed that the amounts of water needed to maximise profit and maximise yield are different, which has economic and environmental implications. Irrigation needed to maximise profits varied with both agronomic and economic factors, which can be quite variable with season and location. Therefore, better tools and information that consider the agronomic and economic implications of irrigation decisions need to be developed and made available to growers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the importance of water for rice production, this study examines the factors affecting the technical efficiency (TE) of irrigated rice farmers in village irrigation systems (VIS) in Sri Lanka. Primary data were collected from 460 rice farmers in the Kurunagala District, Sri Lanka, to estimate a stochastic translog production frontier for rice production. The mean TE of rice farming in village irrigation was found to be 0.72, although 63% of rice farmers exceeded this average. The most influential factors of TE are membership of Farmer Organisations (FOs) and the participatory rate in collective actions organised by FOs. The results suggest that enhancement of co-operative arrangements of farmers by strengthening the membership of FOs is considered important for increasing TE in rice farming in VIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wound debridement refers to the removal of necrotic, devitalized, or contaminated tissue and/or foreign material to promote wound healing. Surgical debridement uses sharp instruments to cut dead tissue from a wound and it is the quickest and most efficient method of debridement. A wound debridement simulator [1,2] can ensure that a medical trainee is competent prior to performing a procedure on a genuine patient. Irrigation is performed at different stages of debridement in order to remove debris and reduce the bacteria count through rinsing the wound. This paper presents a novel approach for realistic irrigation visualization based on texture representations of debris. This approach applies image processing techniques to a series of images, which model the cleanliness of the wound. The active texture is generated and updated dynamically based on the irrigation state, location, and range. Presented results demonstrate that texture mapping and image processing techniques can provide effective and efficient solutions for irrigation visualization in the wound debridement simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irrigation is known to stimulate soil microbial carbon and nitrogen turnover and potentially the emissions of nitrous oxide (N2O) and carbon dioxide (CO2). We conducted a study to evaluate the effect of three different irrigation intensities on soil N2O and CO2 fluxes and to determine if irrigation management can be used to mitigate N2O emissions from irrigated cotton on black vertisols in South-Eastern Queensland, Australia. Fluxes were measured over the entire 2009/2010 cotton growing season with a fully automated chamber system that measured emissions on a sub-daily basis. Irrigation intensity had a significant effect on CO2 emission. More frequent irrigation stimulated soil respiration and seasonal CO2 fluxes ranged from 2.7 to 4.1 Mg-C ha−1 for the treatments with the lowest and highest irrigation frequency, respectively. N2O emission happened episodic with highest emissions when heavy rainfall or irrigation coincided with elevated soil mineral N levels and seasonal emissions ranged from 0.80 to 1.07 kg N2O-N ha−1 for the different treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the cotton cropping season, uncorrected for background emissions, ranged from 0.40 to 0.53 % of total N applied for the different treatments. There was no significant effect of the different irrigation treatments on soil N2O fluxes because highest emission happened in all treatments following heavy rainfall caused by a series of summer thunderstorms which overrode the effect of the irrigation treatment. However, higher irrigation intensity increased the cotton yield and therefore reduced the N2O intensity (N2O emission per lint yield) of this cropping system. Our data suggest that there is only limited scope to reduce absolute N2O emissions by different irrigation intensities in irrigated cotton systems with summer dominated rainfall. However, the significant impact of the irrigation treatments on the N2O intensity clearly shows that irrigation can easily be used to optimize the N2O intensity of such a system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Irrigation management affects soil water dynamics as well as the soil microbial carbon and nitrogen turnover and potentially the biosphere-atmosphere exchange of greenhouse gasses (GHG). We present a study on the effect of three irrigation treatments on the emissions of nitrous oxide (N2O) from irrigated wheat on black vertisols in South-Eastern Queensland, Australia. Methods: Soil N2O fluxes from wheat were monitored over one season with a fully automated system that measured emissions on a sub-daily basis. Measurements were taken from 3 subplots for each treatment within a randomized split-plot design. Results: Highest N2O emissions occurred after rainfall or irrigation and the amount of irrigation water applied was found to influence the magnitude of these “emission pulses”. Daily N2O emissions varied from -0.74 to 20.46 g N2O-N ha-1 day-1 resulting in seasonal losses ranging from 0.43 to 0.75 kg N2O N ha-1 season -1 for the different irrigation treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the wheat cropping season, uncorrected for background emissions, ranged from 0.2 to 0.4% of total N applied for the different treatments. Highest seasonal N2O emissions were observed in the treatment with the highest irrigation intensity; however, the N2O intensity (N2O emission per crop yield) was highest in the treatment with the lowest irrigation intensity. Conclusions: Our data suggest that timing and amount of irrigation can effectively be used to reduce N2O losses from irrigated agricultural systems; however, in order to develop sustainable mitigation strategies the N2O intensity of a cropping system is an important concept that needs to be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption there is limited domestic knowledge of greywater reuse, there is no pressure to produce lowlevel phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or a lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Violence in entertainment districts is a major problem across urban landscapes throughout the world. Research shows that licensed premises are the third most common location for homicides and serious assaults, accounting for one in ten fatal and nonfatal assaults. One class of interventions that aims to reduce violence in entertainment districts involves the use of civil remedies: a group of strategies that use civil or regulatory measures as legal “levers” to reduce problem behavior. One specific civil remedy used to reduce problematic behavior in entertainment districts involves manipulation of licensed premise trading hours. This article uses generalized linear models to analyze the impact of lockout legislation on recorded violent offences in two entertainment districts in the Australian state of Queensland. Our research shows that 3 a.m. lockout legislation led to a direct and significant reduction in the number of violent incidents inside licensed premises. Indeed, the lockouts cut the level of violent crime inside licensed premises by half. Despite these impressive results for the control of violence inside licensed premises, we found no evidence that the lockout had any impact on violence on streets and footpaths outside licensed premises that were the site for more than 80 percent of entertainment district violence. Overall, however, our analysis suggests that lockouts are an important mechanism that helps to control the level of violence inside licensed premises but that finely grained contextual responses to alcohol-related problems are needed rather than one-size-fits-all solutions.