118 resultados para Input-output model
Resumo:
In this paper, we present a ∑GIi/D/1/∞ queue with heterogeneous input/output slot times. This queueing model can be regarded as an extension of the ordinary GI/D/1/∞ model. For this ∑GIi/D/1/∞ queue, we assume that several input streams arrive at the system according to different slot times. In other words, there are different slot times for different input/output processes in the queueing model. The queueing model can therefore be used for an ATM multiplexer with heterogeneous input/output link capacities. Several cases of the queueing model are discussed to reflect different relationships among the input/output link capacities of an ATM multiplexer. In the queueing analysis, two approaches: the Markov model and the probability generating function technique, are adopted to develop the queue length distributions observed at different epochs. This model is particularly useful in the performance analysis of ATM multiplexers with heterogeneous input/output link capacities.
Resumo:
Economics education research studies conducted in the UK, USA and Australia to investigate the effects of learning inputs on academic performance have been dominated by the input-output model (Shanahan and Meyer, 2001). In the Student Experience of Learning framework, however, the link between learning inputs and outputs is mediated by students' learning approaches which in turn are influenced by their perceptions of the learning contexts (Evans, Kirby, & Fabrigar, 2003). Many learning inventories such as Biggs' Study Process Questionnaires and Entwistle and Ramsden' Approaches to Study Inventory have been designed to measure approaches to academic learning. However, there is a limitation to using generalised learning inventories in that they tend to aggregate different learning approaches utilised in different assessments. As a result, important relationships between learning approaches and learning outcomes that exist in specific assessment context(s) will be missed (Lizzio, Wilson, & Simons, 2002). This paper documents the construction of an assessment specific instrument to measure learning approaches in economics. The post-dictive validity of the instrument was evaluated by examining the association of learning approaches to students' perceived assessment demand in different assessment contexts.
Resumo:
Over the past decade, the mining industry has come to recognise the importance of water both to itself and to others. Water accounting is a formalisation of this importance that quantifies and communicates how water is used by individual sites and the industry as a whole. While there are a number of different accounting frameworks that could be used within the industry, the Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry-led approach that provides a consistent representation of mine site water interactions regardless of their operational, social or environmental context that allows for valid comparisons between sites and companies. The WAF contains definitions of offsite water sources and destinations and onsite water use, a methodology for applying the definitions and a set of metrics to measure site performance. The WAF is comprised of two models: the Input-Output Model, which represents the interactions between sites and their surrounding community and the Operational Model, which represents onsite water interactions. Members of the MCA have recently adopted the WAF’s Input-Output Model to report on their external water interactions in their Australian operations with some adopting it on a global basis. To support this adoption, there is a need for companies to better understand how to implement the WAF in their own operations. Developing a water account is non-trivial, particularly for sites unfamiliar with the WAF or for sites with the need to represent unusual features. This work describes how to build a water account for a given site using the Input-Output Model with an emphasis on how to represent challenging situations.
Resumo:
Water reporting is becoming increasingly common amongst minerals companies. The Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF), co-developed by the Centre for Water in the Minerals Industry (CWiMI), provides a standard set of terms for water reporting. The WAF was established due to the need of the minerals industry to report on its water management consistently, rather than report using company-specific terms which can cause confusion and makes company comparisons impossible. The WAF consists of two models: The Input-Output Model, which represents interactions between a site and its surrounding community and environment, and the Operational Model, which represents the interactions within a site.
Resumo:
The Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry lead initiative to enable cross company communication and comparisons of water management performance. The WAF consists of two models, the Input-Output Model that represents water interactions between an operation and its surrounding environment and the Operational Model that represents water interactions within an operation. Recently, MCA member companies have agreed to use the Input-Output Model to report on their external water interactions in Australian operations, with some adopting it globally. The next step will be to adopt the Operational Model. This will expand the functionality of the WAF from corporate reporting to allowing widespread identification of inefficiencies and to connect internal and external interactions. Implementing the WAF, particularly the Operational Model, is non-trivial. It can be particularly difficult for operations that are unfamiliar with the WAF definitions and methodology, lack information pertaining to flow volumes or contain unusual configurations. Therefore, there is a need to help industry with its implementation. This work presents a step-by-step guide to producing the Operational Model. It begins by describing a methodology for implementing the Operational Model by describing the identification of pertinent objects (stores, tasks and treatments), quantification of flows, aggregation of objects and production of reports. It then discusses how the Operational Model can represent a series of challenging scenarios and how it can be connected with Input-Output Model to improve water management.
Resumo:
This paper investigates what happened in one Australian primary school as part of the establishment, use and development of a computer laboratory over a period of two years. As part of a school renewal project, the computer lab was introduced as an ‘innovative’ way to improve the skills of teachers and children in information and communication technologies (ICT) and to lead to curriculum change. However, the way in which the lab was conceptualised and used worked against achieving these goals. The micropolitics of educational change and an input-output understanding of computers meant that change remained structural rather pedagogical or philosophical.
Resumo:
Increasing global competitiveness worldwide has forced manufacturing organizations to produce high-quality products more quickly and at a competitive cost. In order to reach these goals, they need good quality components from suppliers at optimum price and lead time. This actually forced all the companies to adapt different improvement practices such as lean manufacturing, Just in Time (JIT) and effective supply chain management. Applying new improvement techniques and tools cause higher establishment costs and more Information Delay (ID). On the contrary, these new techniques may reduce the risk of stock outs and affect supply chain flexibility to give a better overall performance. But industry people are unable to measure the overall affects of those improvement techniques with a standard evaluation model .So an effective overall supply chain performance evaluation model is essential for suppliers as well as manufacturers to assess their companies under different supply chain strategies. However, literature on lean supply chain performance evaluation is comparatively limited. Moreover, most of the models assumed random values for performance variables. The purpose of this paper is to propose an effective supply chain performance evaluation model using triangular linguistic fuzzy numbers and to recommend optimum ranges for performance variables for lean implementation. The model initially considers all the supply chain performance criteria (input, output and flexibility), converts the values to triangular linguistic fuzzy numbers and evaluates overall supply chain performance under different situations. Results show that with the proposed performance measurement model, improvement area for each variable can be accurately identified.
Resumo:
In this paper, a model-predictive control (MPC) method is detailed for the control of nonlinear systems with stability considerations. It will be assumed that the plant is described by a local input/output ARX-type model, with the control potentially included in the premise variables, which enables the control of systems that are nonlinear in both the state and control input. Additionally, for the case of set point regulation, a suboptimal controller is derived which has the dual purpose of ensuring stability and enabling finite-iteration termination of the iterative procedure used to solve the nonlinear optimization problem that is used to determine the control signal.
Resumo:
Some uncertainties such as the stochastic input/output power of a plug-in electric vehicle due to its stochastic charging and discharging schedule, that of a wind unit and that of a photovoltaic generation source, volatile fuel prices and future uncertain load growth, all together could lead to some risks in determining the optimal siting and sizing of distributed generators (DGs) in distributed systems. Given this background, under the chance constrained programming (CCP) framework, a new method is presented to handle these uncertainties in the optimal sitting and sizing problem of DGs. First, a mathematical model of CCP is developed with the minimization of DGs investment cost, operational cost and maintenance cost as well as the network loss cost as the objective, security limitations as constraints, the sitting and sizing of DGs as optimization variables. Then, a Monte Carolo simulation embedded genetic algorithm approach is developed to solve the developed CCP model. Finally, the IEEE 37-node test feeder is employed to verify the feasibility and effectiveness of the developed model and method. This work is supported by an Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project on Intelligent Grids Under the Energy Transformed Flagship, and Project from Jiangxi Power Company.
Resumo:
This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle’s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.
Resumo:
Supervisory Control and Data Acquisition systems (SCADA) are widely used to control critical infrastructure automatically. Capturing and analyzing packet-level traffic flowing through such a network is an essential requirement for problems such as legacy network mapping and fault detection. Within the framework of captured network traffic, we present a simple modeling technique, which supports the mapping of the SCADA network topology via traffic monitoring. By characterizing atomic network components in terms of their input-output topology and the relationship between their data traffic logs, we show that these modeling primitives have good compositional behaviour, which allows complex networks to be modeled. Finally, the predictions generated by our model are found to be in good agreement with experimentally obtained traffic.
Resumo:
The objective of this paper is to provide a more comprehensive e±ciency measure to estimate the performance of OECD and non-OECD countries. A Russell directional distance function that appropriately credits the decision-making unit not only for increase in desirable outputs but also for the decrease of undesirable outputs is derived from the proposed weighted Russell directional distance model. The method was applied to a panel of 116 countries from 1992 to 2010. This framework also decomposes the comprehensive efficiency measure into individual input/ output components' inefficiency scores that are useful for policy making. The results reveal that the OECD countries perform better than the non-OECD countries in overall, goods,labor and capital efficiencies, but worse in bad and energy efficiencies.
Resumo:
Indonesia’s construction industry is important to the national economy. However, its competitiveness is considered low due to the lack of success of its development strategy and policy. A new approach known as the cluster approach is being used to make strategy and policy in order to develop a stronger, and more competitive industry. This paper discusses the layout of the Indonesian construction cluster and its competitiveness. The archival analysis research approach was used to identify the construction cluster. The analysis was based on the input-output (I/O) tables of the years 1995 and 2000, which were published by the Indonesian Central Bureau of Statistics. The results suggest that the Indonesian construction cluster consists of the industries directly involved in construction as the core, with the other related and supporting industries as the balance. The anatomy of the Indonesian construction cluster permits structural changes to happen within it. These changes depend on policies that regulate the cluster’s constituents
Resumo:
Security-critical communications devices must be evaluated to the highest possible standards before they can be deployed. This process includes tracing potential information flow through the device's electronic circuitry, for each of the device's operating modes. Increasingly, however, security functionality is being entrusted to embedded software running on microprocessors within such devices, so new strategies are needed for integrating information flow analyses of embedded program code with hardware analyses. Here we show how standard compiler principles can augment high-integrity security evaluations to allow seamless tracing of information flow through both the hardware and software of embedded systems. This is done by unifying input/output statements in embedded program execution paths with the hardware pins they access, and by associating significant software states with corresponding operating modes of the surrounding electronic circuitry.
Resumo:
This paper describes Electronic Blocks, a new robot construction element designed to allow children as young as age three to build and program robotic structures. The Electronic Blocks encapsulate input, output and logic concepts in tangible elements that young children can use to create a wide variety of physical agents. The children are able to determine the behavior of these agents by the choice of blocks and the manner in which they are connected. The Electronic Blocks allow children without any knowledge of mechanical design or computer programming to create and control physically embodied robots. They facilitate the development of technological capability by enabling children to design, construct, explore and evaluate dynamic robotics systems. A study of four and five year-old children using the Electronic Blocks has demonstrated that the interface is well suited to young children. The complexity of the implementation is hidden from the children, leaving the children free to autonomously explore the functionality of the blocks. As a consequence, children are free to move their focus beyond the technology. Instead they are free to focus on the construction process, and to work on goals related to the creation of robotic behaviors and interactions. As a resource for robot building, the blocks have proved to be effective in encouraging children to create robot structures, allowing children to design and program robot behaviors.