314 resultados para Initial formation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alliances, with other inter-organisational forms, have become a strategy of choice and necessity for both the private and public sectors. From initial formation, alliances develop and change in different ways, with research suggesting that many alliances will be terminated without their potential value being realised. Alliance process theorists address this phenomenon, seeking explanations as to why alliances unfold the way they do. However, these explanations have generally focussed on economic and structural determinants: empirically, little is known about how and why the agency of alliance actors shapes the alliance path. Theorists have suggested that current alliance process theory has provided valuable, but partial accounts of alliance development, which could be usefully extended by considering social and individual factors. The purpose of this research therefore was to extend alliance process theory by exploring individual agency as an explanation of alliance events and in doing so, reveal the potential of a multi-frame approach for understanding alliance process. Through an historical study of a single, rich case of alliance process, this thesis provided three explanations for the sequence of alliance events, each informed by a different theoretical perspective. The explanatory contribution of the Individual Agency (IA) perspective was distilled through juxtaposition with the perspectives of Environmental Determinism (ED) and Indeterminacy/Chance (I/C). The research produced a number of findings. First, it provided empirical support for the tentative proposition that the choices and practices of alliance actors are partially explanatory of alliance change and that these practices are particular to the alliance context. Secondly, the study found that examining the case through three theoretical frames provided a more complete explanation. Two propositions were put forward as to how individual agency can be theorised within this three-perspective framework. Finally, the case explained which alliance actors were required to shape alliance decision making in this case and why.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomimetic systems employed for biotechnological applications i.e. as biosensors or bio fuel cells, require initial formation of conducting support/protein complexes with controlled properties. The specific interaction of the protein with the support determines important qualities of the device such as electrical communication, long-term stability and catalytic efficiency. In this respect the system parameters have to be chosen in a way that high protein loading on the support is achieved while protein denaturation upon adsorption is prevented. The conditions on the surface have to be adjusted in such a way that the desired surface reaction of the protein i.e. electron transfer to either the electrode or a second redox partner, is still guaranteed. Hence the choice of support, its functionlisation as well as the right adjustment of solution parameters play a crucial role in the rational design of these support/protein constructs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemical reaction studies of N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide-based ionic liquid with the lithium metal surface were performed using ab initio molecular dynamics (aMD) simulations and X-ray Photoelectron Spectroscopy (XPS). The molecular dynamics simulations showed rapid and spontaneous decomposition of the ionic liquid anion, with subsequent formation of long-lived species such as lithium fluoride. The simulations also revealed the cation to retain its structure by generally moving away from the lithium surface. The XPS experiments showed evidence of decomposition of the anion, consistent with the aMD simulations and also of cation decomposition and it is envisaged that this is due to the longer time scale for the XPS experiment compared to the time scale of the aMD simulation. Overall experimental results confirm the majority of species suggested by the simulation. The rapid chemical decomposition of the ionic liquid was shown to form a solid electrolyte interphase composed of the breakdown products of the ionic liquid components in the absence of an applied voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A month-long intensive measurement campaign was conducted in March/April 2007 at Agnes Water, a remote coastal site just south of the Great Barrier Reef on the east coast of Australia. Particle and ion size distributions were continuously measured during the campaign. Coastal nucleation events were observed in clean, marine air masses coming from the south-east on 65% of the days. The events usually began at ~10:00 local time and lasted for 1-4 hrs. They were characterised by the appearance of a nucleation mode with a peak diameter of ~10 nm. The freshly nucleated particles grew within 1-4 hrs up to sizes of 20-50 nm. The events occurred when solar intensity was high (~1000 W m-2) and RH was low (~60%). Interestingly, the events were not related to tide height. The volatile and hygroscopic properties of freshly nucleated particles (17-22.5 nm), simultaneously measured with a volatility-hygroscopicity-tandem differential mobility analyser (VH-TDMA), were used to infer chemical composition. The majority of the volume of these particles was attributed to internally mixed sulphate and organic components. After ruling out coagulation as a source of significant particle growth, we conclude that the condensation of sulphate and/or organic vapours was most likely responsible for driving particle growth during the nucleation events. We cannot make any direct conclusions regarding the chemical species that participated in the initial particle nucleation. However, we suggest that nucleation may have resulted from the photo-oxidation products of unknown sulphur or organic vapours emitted from the waters of Hervey Bay, or from the formation of DMS-derived sulphate clusters over the open ocean that were activated to observable particles by condensable vapours emitted from the nutrient rich waters around Fraser Island or Hervey Bay. Furthermore, a unique and particularly strong nucleation event was observed during northerly wind. The event began early one morning (08:00) and lasted almost the entire day resulting in the production of a large number of ~80 nm particles (average modal concentration during the event was 3200 cm-3). The Great Barrier Reef was the most likely source of precursor vapours responsible for this event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Home Automation (HA) has emerged as a prominent ¯eld for researchers and in- vestors confronting the challenge of penetrating the average home user market with products and services emerging from technology based vision. In spite of many technology contri- butions, there is a latent demand for a®ordable and pragmatic assistive technologies for pro-active handling of complex lifestyle related problems faced by home users. This study has pioneered to develop an Initial Technology Roadmap for HA (ITRHA) that formulates a need based vision of 10-15 years, identifying market, product and technology investment opportunities, focusing on those aspects of HA contributing to e±cient management of home and personal life. The concept of Family Life Cycle is developed to understand the temporal needs of family. In order to formally describe a coherent set of family processes, their relationships, and interaction with external elements, a reference model named Fam- ily System is established that identi¯es External Entities, 7 major Family Processes, and 7 subsystems-Finance, Meals, Health, Education, Career, Housing, and Socialisation. Anal- ysis of these subsystems reveals Soft, Hard and Hybrid processes. Rectifying the lack of formal methods for eliciting future user requirements and reassessing evolving market needs, this study has developed a novel method called Requirement Elicitation of Future Users by Systems Scenario (REFUSS), integrating process modelling, and scenario technique within the framework of roadmapping. The REFUSS is used to systematically derive process au- tomation needs relating the process knowledge to future user characteristics identi¯ed from scenarios created to visualise di®erent futures with richly detailed information on lifestyle trends thus enabling learning about the future requirements. Revealing an addressable market size estimate of billions of dollars per annum this research has developed innovative ideas on software based products including Document Management Systems facilitating automated collection, easy retrieval of all documents, In- formation Management System automating information services and Ubiquitous Intelligent System empowering the highly mobile home users with ambient intelligence. Other product ideas include robotic devices of versatile Kitchen Hand and Cleaner Arm that can be time saving. Materialisation of these products require technology investment initiating further research in areas of data extraction, and information integration as well as manipulation and perception, sensor actuator system, tactile sensing, odour detection, and robotic controller. This study recommends new policies on electronic data delivery from service providers as well as new standards on XML based document structure and format.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Bone healing is sensitive to the initial mechanical conditions with tissue differentiation being determined within days of trauma. Whilst axial compression is regarded as stimulatory, the role of interfragmentary shear is controversial. The purpose of this study was to determine how the initial mechanical conditions produced by interfragmentary shear and torsion differ from those produced by axial compressive movements. ----- ----- Methods: The finite element method was used to estimate the strain, pressure and fluid flow in the early callus tissue produced by the different modes of interfragmentary movement found in vivo. Additionally, tissue formation was predicted according to three principally different mechanobiological theories. ----- ----- Findings: Large interfragmentary shear movements produced comparable strains and less fluid flow and pressure than moderate axial interfragmentary movements. Additionally, combined axial and shear movements did not result in overall increases in the strains and the strain magnitudes were similar to those produced by axial movements alone. Only when axial movements where applied did the non-distortional component of the pressure–deformation theory influence the initial tissue predictions. ----- ----- Interpretation: This study found that the mechanical stimuli generated by interfragmentary shear and torsion differed from those produced by axial interfragmentary movements. The initial tissue formation as predicted by the mechanobiological theories was dominated by the deformation stimulus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fracture healing is influenced by fixation stability and experimental evidence suggests that the initial mechanical conditions may determine the healing outcome. We hypothesised that mechanical conditions influence not only the healing outcome, but also the early phase of fracture healing. Additionally, it was hypothesised that decreased fixation stability characterised by an increased shear interfragmentary movement results in a delay in healing. Sixty-four sheep underwent a mid-shaft tibial osteotomy which was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture callus was analysed using radiological, biomechanical and histological techniques. The tibia treated with semi-rigid fixation showed inferior callus stiffness and quality after 6 weeks. At 9 weeks, the calluses were no longer distinguishable in their mechanical competence. The calluses at 9 weeks produced under rigid fixation were smaller and consisted of a reduced fibrous tissue component. These results demonstrate that the callus formation over the course of healing differed both morphologically and in the rate of development. In this study, we provide evidence that the course of healing is influenced by the initial fixation stability. The semi-rigid fixator did not result in delayed healing, but a less optimal healing path was taken. An upper limit of stability required for successful healing remains unknown, however a limit by which healing is less optimal has been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed mineralogical studies of the matrix and fracture-fill materials of a large number of samples from the Rustler Formation have been carried out using x-ray diffraction, high-resolution transmission electron microscopy, electron microprobe analysis, x-ray fluorescence, and atomic absorption spectrophotometry. These analyses indicate the presence of four clay minerals: interstratified chlorite/saponite, illite, chlorite, and serpentine. Corrensite (regularly stratified chlorite/saponite) is the dominant clay mineral in samples from the Culebra dolomite and two shale layers of the lower unnamed member of the Rustler Formation. Within other layers of the Rustler Formation, disordered mixed chlorite/saponite is usually the most abundant clay mineral. Studies of the morphology and composition of clay crystallites suggest that the corrensite was formed by the alteration of detrital dioctahedral smectite in magnesium-rich pore fluids during early diagenesis of the Rustler Formation. This study provides initial estimates of the abundance and nature of the clay minerals in the Culebra dolomite in the vicinity of the Waste Isolation Pilot Plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ancient sandstones include important reservoirs for hydrocarbons (oil and gas), but, in many cases, their ability to serve as reservoirs is heavily constrained by the effects of carbonate cements on porosity and permeability. This study investigated the controls on distribution and abundance of carbonate cements within the Jurassic Plover Formation, Browse Basin, North West Shelf, Australia. Samples were analysed petrographically with point counting of 59 thin sections and mineralogically with x-ray diffraction from two wells within the Torosa Gas Field. Selected samples were also analysed for stable isotopes of O and C. Sandstones are classified into eleven groups. Most abundant are quartzarenites and then calcareous quartzarenites. Lithology ranged between sandstones consisting of mostly quartz with scant or no carbonate in the form of cement or allochems, to sandstones with as much as 40% carbonate. The major sources of carbonate cement in Torosa 1 and Torosa 4 sandstones were found to be early, shallow marine diagenetic processes (including cementation), followed by calcite cementation and recrystallisation of cements and allochems during redistribution by meteoric waters. Blocky and sparry calcite cements, indicative of meteoric environments on the basis of stable isotope values and palaeotemperature assessment, overprinted the initial shallow marine cement phase in all cases and meteoric cements are dominant. Torosa 4 was influenced more by marine settings than Torosa 1, and thus has the greater potential for calcite cement. The relatively low compaction of calcite-cemented sandstones and the stable isotope data suggest deep burial cementation was not a major factor. Insufficient volcanic rock fragments or authigenic clay content infers alteration of feldspars was not a major source of calcite. Very little feldspar is present, altered or otherwise. Hence, increased alkalinity from feldspar dissolution is not a contributing factor in cement formation. Increased alkalinity from bacterial sulphate reduction in organic–rich fine sediments may have driven limited cementation in some samples. The main definable and significant source of diagenetic marine calcite cement originated from original marine cements and the nearby dissolution of biogenic sources (allochems) at relatively shallow depths. Later diagenetic fluids emplaced minor dolomite, but this cement did not greatly affect the reservoir quality in the samples studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fracture healing is a complicated coupling of many processes. Yet despite the apparent complexity, fracture repair is usually effective. There is, however, no comprehensive mathematical model addressing the multiple interactions of cells, cytokines and oxygen that includes extra-cellular matrix production and that results in the formation of the early stage soft callus. This thesis develops a one dimensional continuum transport model in the context of early fracture healing. Although fracture healing is a complex interplay of many local factors, critical components are identified and used to construct an hypothesis about regulation of the evolution of early callus formation. Multiple cell lines, cellular differentiation, oxygen levels and cytokine concentrations are examined as factors affecting this model of early bone repair. The model presumes diffusive and chemotactic cell migration mechanisms. It is proposed that the initial signalling regime and oxygen availability arising as consequences of bone fracture, are sufficient to determine the quantity and quality of early soft callus formation. Readily available software and purpose written algorithms have been used to obtain numerical solutions representative of various initial conditions. These numerical distributions of cellular populations reflect available histology obtained from murine osteotomies. The behaviour of the numerical system in response to differing initial conditions can be described by alternative in vivo healing pathways. An experimental basis, as illustrated in murine fracture histology, has been utilised to validate the mathematical model outcomes. The model developed in this thesis has potential for future extension, to incorporate processes leading to woven bone deposition, while maintaining the characteristics that regulate early callus formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a rapid synthesis of gold nanoparticles using hydroquinone as a reducing agent under acidic conditions without the need for precursor seed particles. The nanoparticle formation process is facilitated by the addition of NaOH to a solution containing HAuCl4 and hydroquinone to locally change the pH; this enhances the reducing capability of hydroquinone to form gold nucleation centres, after which further growth of gold can take place through an autocatalytic mechanism. The stability of the nanoparticles is highly dependent on the initial solution pH, and both the concentration of added NaOH and hydroquinone present in solution. The gold nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, and zeta potential measurements. It was found that under optimal conditions that stable aqueous suspensions of 20 nm diameter nanoparticles can be achieved where benzoquinone, the oxidized product of hydroquinone, acts as a capping agent preventing nanoparticles aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleation-initiated oxidation of a Si surface at very low temperatures in plasmas is demonstrated experimentally, in contrast to the Deal-Grove mechanism, which predicts Si oxidation at a Si/SiO interface and cannot adequately describe the formation of SiO nanodots and oxidation rates at very low (several nanometers) oxide thickness. Based on the experimental results, an alternative oxidation scenario is proposed and supported by multiscale numerical simulations suggesting that saturation of micro- and nanohillocks with oxygen is a trigger mechanism for initiation of Si surface oxidation. This approach is generic and can be applied to describe the kinetics of low-temperature oxidation of other materials. © 2009 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of the nucleation and growth of carbon nanotube and nanocone arrays on Ni catalyst nanoparticles on a silicon surface exposed to a low-temperature plasma are investigated numerically, using a complex model that includes surface diffusion and ion motion equations. It is found that the degree of ionization of the carbon flux strongly affects the kinetics of nanotube and nanocone nucleation on partially saturated catalyst patterns. The use of highly ionized carbon flux allows formation of a nanotube array with a very narrow height distribution of half-width 7 nm. Similar results are obtained for carbon nanocone arrays, with an even narrower height distribution, using a highly ionized carbon flux. As the deposition time increases, nanostructure arrays develop without widening the height distribution when the flux ionization degree is high, in contrast to the fairly broad nanostructure height distributions obtained when the degree of ionization is low.