369 resultados para Induced Refractive Errors
Resumo:
Purpose: To demonstrate that relatively simple third-order theory can provide a framework which shows how peripheral refraction can be manipulated by altering the forms of spectacle lenses. Method: Third-order equations were used to yield lens forms that correct peripheral power errors, either for the lenses alone or in combination with typical peripheral refractions of myopic eyes. These results were compared with those of finite ray-tracing. Results: The approximate forms of spherical and conicoidal lenses provided by third-order theory were flatter over a moderate myopic range than the forms obtained by rigorous raytracing. Lenses designed to correct peripheral refractive errors produced large errors when used with foveal vision and a rotating eye. Correcting astigmatism tended to give large errors in mean oblique error and vice versa. When only spherical lens forms are used, correction of the relative hypermetropic peripheral refractions of myopic eyes which are observed experimentally, or the provision of relative myopic peripheral refractions in such eyes, seems impossible in the majority of cases. Conclusion: The third-order spectacle lens design approach can readily be used to show trends in peripheral refraction.
Resumo:
Purpose To design and manufacture lenses to correct peripheral refraction along the horizontal meridian and to determine whether these resulted in noticeable improvements in visual performance. Method Subjective refraction of a low myope was determined on the basis of best peripheral detection acuity along the horizontal visual field out to ±30° for both horizontal and vertical gratings. Subjective refraction was compared to objective refractions using a COAS-HD aberrometer. Special lenses were made to correct peripheral refraction, based on designs optimized with and without smoothing across a 3 mm diameter square aperture. Grating detection was retested with these lenses. Contrast thresholds of 1.25’ spots were determined across the field for the conditions of best correction, on-axis correction, and the special lenses. Results The participant had high relative peripheral hyperopia, particularly in the temporal visual field (maximum 2.9 D). There were differences > 0.5D between subjective and objective refractions at a few field angles. On-axis correction reduced peripheral detection acuity and increased peripheral contrast threshold in the peripheral visual field, relative to the best correction, by up to 0.4 and 0.5 log units, respectively. The special lenses restored most of the peripheral vision, although not all at angles to ±10°, and with the lens optimized with aperture-smoothing possibly giving better vision than the lens optimized without aperture-smoothing at some angles. Conclusion It is possible to design and manufacture lenses to give near optimum peripheral visual performance to at least ±30° along one visual field meridian. The benefit of such lenses is likely to be manifest only if a subject has a considerable relative peripheral refraction, for example of the order of 2 D.
Resumo:
PURPOSE To determine the prevalence of refractive errors in Shiraz schoolchildren by age and gender. METHODS For this cross-sectional study, random cluster sampling was carried out from students of the 2008-2009 academic year. After the initial interview, ophthalmic examinations including tests of visual acuity, non-cycloplegic and cycloplegic refraction and binocular vision were performed. Myopia was defined as a spherical equivalent < or =-0.50 dioptre (D), hyperopia as > or =+2.0 D, and astigmatism as a cylinder refraction > or =0.75 D. All values for school grade and gender were directly standardized based on the total student population in the 2008-2009 school year. RESULTS A total of 2130 students were sampled, of which 1872 participated in the study (response rate = 87.88%). The prevalence of uncorrected, best-corrected, presenting and spectacle corrected visual acuity of 6/12 or worse in the better eye was 6.46%, 0%, 1.49% and 0.9%, respectively. The prevalence rates of myopia, hyperopia and astigmatism were 4.35% (95% confidence interval [CI]: 2.89-5.82%), 5.04% (95% CI: 3.50-6.58%), and 11.27% (95% CI: 9.81-12.74%), respectively. Anisometropia was detected in 2.58% of schoolchildren. The prevalence of hyperopia significantly decreased with age (P = 0.021). CONCLUSIONS Compared with other reported rates, the prevalence of myopia in the schoolchildren of Shiraz is similar to that in most places excluding East Asian countries, and that of hyperopia is in the mid range.
Resumo:
Purpose: To determine the prevalence and risk factors of refractive errors among schoolchildren in Shiraz, Iran. Methods: In a cross-sectional study, using random cluster sampling, 3065 Shiraz schoolchildren were selected in this study. The participants totaled 2683; 1872 elementary and middle school and 811 high school students. For the primary and middle schoolchildren, cycloplegic refraction and for the high school students, non-cycloplegic autorefraction was measured. Myopia, defined as spherical equivalent (SE) refraction -0.50 diopter (D) or worse, hyperopia as SE +2.00D and +0.50D or more for cycloplegic and noncycloplegic refractions respectively, and astigmatism as cylinder -0.75D or worse. Results: The prevalence of refractive errors in elementary and middle school students was: myopia 4.35 % (95% confidence interval (CI), 2.89 -5.81), hyperopia 5.04 % (95%CI, 3.49 -6.58) and astigmatism 11.79 % (95%CI, 10.21 -13.38). For high school students, these rates were 22.4 % (95%CI, 18.44 -26.36), 10.52 % (95%CI, 6.75 -14.29) and 20.99% (95%CI, 16.55 -25.44), respectively.The prevalence of myopia increased with age in primary and middle school students (OR=1.15, 95% CI, 0.98 to1.33, p=0.073). Conclusions: The result of this study indicated a relatively low prevalence of refractive errors among schoolchildren in Shiraz according to the protocol by "Refractive Error Study in Children" (RESC) in other investigations.
Resumo:
Background: Few studies have specifically investigated the functional effects of uncorrected astigmatism on measures of reading fluency. This information is important to provide evidence for the development of clinical guidelines for the correction of astigmatism. Methods: Participants included 30 visually normal, young adults (mean age 21.7 ± 3.4 years). Distance and near visual acuity and reading fluency were assessed with optimal spectacle correction (baseline) and for two levels of astigmatism, 1.00DC and 2.00DC, at two axes (90° and 180°) to induce both against-the-rule (ATR) and with-the-rule (WTR) astigmatism. Reading and eye movement fluency were assessed using standardized clinical measures including the test of Discrete Reading Rate (DRR), the Developmental Eye Movement (DEM) test and by recording eye movement patterns with the Visagraph (III) during reading for comprehension. Results: Both distance and near acuity were significantly decreased compared to baseline for all of the astigmatic lens conditions (p < 0.001). Reading speed with the DRR for N16 print size was significantly reduced for the 2.00DC ATR condition (a reduction of 10%), while for smaller text sizes reading speed was reduced by up to 24% for the 1.00DC ATR and 2.00DC condition in both axis directions (p<0.05). For the DEM, sub-test completion speeds were significantly impaired, with the 2.00DC condition affecting both vertical and horizontal times and the 1.00DC ATR condition affecting only horizontal times (p<0.05). Visagraph reading eye movements were not significantly affected by the induced astigmatism. Conclusions: Induced astigmatism impaired performance on selected tests of reading fluency, with ATR astigmatism having significantly greater effects on performance than did WTR, even for relatively small amounts of astigmatic blur of 1.00DC. These findings have implications for the minimal prescribing criteria for astigmatic refractive errors.
Resumo:
Contact lenses are a common method for the correction of refractive errors of the eye. While there have been significant advancements in contact lens designs and materials over the past few decades, the lenses still represent a foreign object in the ocular environment and may lead to physiological as well as mechanical effects on the eye. When contact lenses are placed in the eye, the ocular anatomical structures behind and in front of the lenses are directly affected. This thesis presents a series of experiments that investigate the mechanical and physiological effects of the short-term use of contact lenses on anterior and posterior corneal topography, corneal thickness, the eyelids, tarsal conjunctiva and tear film surface quality. The experimental paradigm used in these studies was a repeated measures, cross-over study design where subjects wore various types of contact lenses on different days and the lenses were varied in one or more key parameters (e.g. material or design). Both, old and newer lens materials were investigated, soft and rigid lenses were used, high and low oxygen permeability materials were tested, toric and spherical lens designs were examined, high and low powers and small and large diameter lenses were used in the studies. To establish the natural variability in the ocular measurements used in the studies, each experiment also contained at least one “baseline” day where an identical measurement protocol was followed, with no contact lenses worn. In this way, changes associated with contact lens wear were considered in relation to those changes that occurred naturally during the 8 hour period of the experiment. In the first study, the regional distribution and magnitude of change in corneal thickness and topography was investigated in the anterior and posterior cornea after short-term use of soft contact lenses in 12 young adults using the Pentacam. Four different types of contact lenses (Silicone hydrogel/ Spherical/–3D, Silicone Hydrogel/Spherical/–7D, Silicone Hydrogel/Toric/–3D and HEMA/Toric/–3D) of different materials, designs and powers were worn for 8 hours each, on 4 different days. The natural diurnal changes in corneal thickness and curvature were measured on two separate days before any contact lens wear. Significant diurnal changes in corneal thickness and curvature within the duration of the study were observed and these were taken into consideration for calculating the contact lens induced corneal changes. Corneal thickness changed significantly with lens wear and the greatest corneal swelling was seen with the hydrogel (HEMA) toric lens with a noticeable regional swelling of the cornea beneath the stabilization zones, the thickest regions of the lenses. The anterior corneal surface generally showed a slight flattening with lens wear. All contact lenses resulted in central posterior corneal steepening, which correlated with the relative degree of corneal swelling. The corneal swelling induced by the silicone hydrogel contact lenses was typically less than the natural diurnal thinning of the cornea over this same period (i.e. net thinning). This highlights why it is important to consider the natural diurnal variations in corneal thickness observed from morning to afternoon to accurately interpret contact lens induced corneal swelling. In the second experiment, the relative influence of lenses of different rigidity (polymethyl methacrylate – PMMA, rigid gas permeable – RGP and silicone hydrogel – SiHy) and diameters (9.5, 10.5 and 14.0) on corneal thickness, topography, refractive power and wavefront error were investigated. Four different types of contact lenses (PMMA/9.5, RGP/9.5, RGP/10.5, SiHy/14.0), were worn by 14 young healthy adults for a period of 8 hours on 4 different days. There was a clear association between fluorescein fitting pattern characteristics (i.e. regions of minimum clearance in the fluorescein pattern) and the resulting corneal shape changes. PMMA lenses resulted in significant corneal swelling (more in the centre than periphery) along with anterior corneal steepening and posterior flattening. RGP lenses, on the other hand, caused less corneal swelling (more in the periphery than centre) along with opposite effects on corneal curvature, anterior corneal flattening and posterior steepening. RGP lenses also resulted in a clinically and statistically significant decrease in corneal refractive power (ranging from 0.99 to 0.01 D), large enough to affect vision and require adjustment in the lens power. Wavefront analysis also showed a significant increase in higher order aberrations after PMMA lens wear, which may partly explain previous reports of "spectacle blur" following PMMA lens wear. We further explored corneal curvature, thickness and refractive changes with back surface toric and spherical RGP lenses in a group of 6 subjects with toric corneas. The lenses were worn for 8 hours and measurements were taken before and after lens wear, as in previous experiments. Both lens types caused anterior corneal flattening and a decrease in corneal refractive power but the changes were greater with the spherical lens. The spherical lens also caused a significant decrease in WTR astigmatism (WRT astigmatism defined as major axis within 30 degrees of horizontal). Both the lenses caused slight posterior corneal steepening and corneal swelling, with a greater effect in the periphery compared to the central cornea. Eyelid position, lid-wiper and tarsal conjunctival staining were also measured in Experiment 2 after short-term use of the rigid and SiHy contact lenses. Digital photos of the external eyes were captured for lid position analysis. The lid-wiper region of the marginal conjunctiva was stained using fluorescein and lissamine green dyes and digital photos were graded by an independent masked observer. A grading scale was developed in order to describe the tarsal conjunctival staining. A significant decrease in the palpebral aperture height (blepharoptosis) was found after wearing of PMMA/9.5 and RGP/10.5 lenses. All three rigid contact lenses caused a significant increase in lid-wiper and tarsal staining after 8 hours of lens wear. There was also a significant diurnal increase in tarsal staining, even without contact lens wear. These findings highlight the need for better contact lens edge design to minimise the interactions between the lid and contact lens edge during blinking and more lubricious contact lens surfaces to reduce ocular surface micro-trauma due to friction and for. Tear film surface quality (TFSQ) was measured using a high-speed videokeratoscopy technique in Experiment 2. TFSQ was worse with all the lenses compared to baseline (PMMA/9.5, RGP/9.5, RGP/10.5, and SiHy/14) in the afternoon (after 8 hours) during normal and suppressed blinking conditions. The reduction in TFSQ was similar with all the contact lenses used, irrespective of their material and diameter. An unusual pattern of change in TFSQ in suppressed blinking conditions was also found. The TFSQ with contact lens was found to decrease until a certain time after which it improved to a value even better than the bare eye. This is likely to be due to the tear film drying completely over the surface of the contact lenses. The findings of this study also show that there is still a scope for improvement in contact lens materials in terms of better wettability and hydrophilicity in order to improve TFSQ and patient comfort. These experiments showed that a variety of changes can occur in the anterior eye as a result of the short-term use of a range of commonly used contact lens types. The greatest corneal changes occurred with lenses manufactured from older HEMA and PMMA lens materials, whereas modern SiHy and rigid gas permeable materials caused more subtle changes in corneal shape and thickness. All lenses caused signs of micro-trauma to the eyelid wiper and palpebral conjunctiva, although rigid lenses appeared to cause more significant changes. Tear film surface quality was also significantly reduced with all types of contact lenses. These short-term changes in the anterior eye are potential markers for further long term changes and the relative differences between lens types that we have identified provide an indication of areas of contact lens design and manufacture that warrant further development.
Resumo:
Melanopsin containing intrinsically photosensitive Retinal Ganglion cells (ipRGCs) mediate the pupil light reflex (PLR) during light onset and at light offset (the post-illumination pupil response, PIPR). Recent evidence shows that the PLR and PIPR can provide non-invasive, objective markers of age-related retinal and optic nerve disease, however there is no consensus on the effects of healthy ageing or refractive error on the ipRGC mediated pupil function. Here we isolated melanopsin contributions to the pupil control pathway in 59 human participants with no ocular pathology across a range of ages and refractive errors. We show that there is no effect of age or refractive error on ipRGC inputs to the human pupil control pathway. The stability of the ipRGC mediated pupil response across the human lifespan provides a functional correlate of their robustness observed during ageing in rodent models.
Resumo:
This study is the first to investigate the effect of prolonged reading on reading performance and visual functions in students with low vision. The study focuses on one of the most common modes of achieving adequate magnification for reading by students with low vision, their close reading distance (proximal or relative distance magnification). Close reading distances impose high demands on near visual functions, such as accommodation and convergence. Previous research on accommodation in children with low vision shows that their accommodative responses are reduced compared to normal vision. In addition, there is an increased lag of accommodation for higher stimulus levels as may occur at close reading distance. Reduced accommodative responses in low vision and higher lag of accommodation at close reading distances together could impact on reading performance of students with low vision especially during prolonged reading tasks. The presence of convergence anomalies could further affect reading performance. Therefore, the aims of the present study were 1) To investigate the effect of prolonged reading on reading performance in students with low vision 2) To investigate the effect of prolonged reading on visual functions in students with low vision. This study was conducted as cross-sectional research on 42 students with low vision and a comparison group of 20 students with normal vision, aged 7 to 20 years. The students with low vision had vision impairments arising from a range of causes and represented a typical group of students with low vision, with no significant developmental delays, attending school in Brisbane, Australia. All participants underwent a battery of clinical tests before and after a prolonged reading task. An initial reading-specific history and pre-task measurements that included Bailey-Lovie distance and near visual acuities, Pelli-Robson contrast sensitivity, ocular deviations, sensory fusion, ocular motility, near point of accommodation (pull-away method), accuracy of accommodation (Monocular Estimation Method (MEM)) retinoscopy and Near Point of Convergence (NPC) (push-up method) were recorded for all participants. Reading performance measures were Maximum Oral Reading Rates (MORR), Near Text Visual Acuity (NTVA) and acuity reserves using Bailey-Lovie text charts. Symptoms of visual fatigue were assessed using the Convergence Insufficiency Symptom Survey (CISS) for all participants. Pre-task measurements of reading performance and accuracy of accommodation and NPC were compared with post-task measurements, to test for any effects of prolonged reading. The prolonged reading task involved reading a storybook silently for at least 30 minutes. The task was controlled for print size, contrast, difficulty level and content of the reading material. Silent Reading Rate (SRR) was recorded every 2 minutes during prolonged reading. Symptom scores and visual fatigue scores were also obtained for all participants. A visual fatigue analogue scale (VAS) was used to assess visual fatigue during the task, once at the beginning, once at the middle and once at the end of the task. In addition to the subjective assessments of visual fatigue, tonic accommodation was monitored using a photorefractor (PlusoptiX CR03™) every 6 minutes during the task, as an objective assessment of visual fatigue. Reading measures were done at the habitual reading distance of students with low vision and at 25 cms for students with normal vision. The initial history showed that the students with low vision read for significantly shorter periods at home compared to the students with normal vision. The working distances of participants with low vision ranged from 3-25 cms and half of them were not using any optical devices for magnification. Nearly half of the participants with low vision were able to resolve 8-point print (1M) at 25 cms. Half of the participants in the low vision group had ocular deviations and suppression at near. Reading rates were significantly reduced in students with low vision compared to those of students with normal vision. In addition, there were a significantly larger number of participants in the low vision group who could not sustain the 30-minute task compared to the normal vision group. However, there were no significant changes in reading rates during or following prolonged reading in either the low vision or normal vision groups. Individual changes in reading rates were independent of their baseline reading rates, indicating that the changes in reading rates during prolonged reading cannot be predicted from a typical clinical assessment of reading using brief reading tasks. Contrary to previous reports the silent reading rates of the students with low vision were significantly lower than their oral reading rates, although oral and silent reading was assessed using different methods. Although the visual acuity, contrast sensitivity, near point of convergence and accuracy of accommodation were significantly poorer for the low vision group compared to those of the normal vision group, there were no significant changes in any of these visual functions following prolonged reading in either group. Interestingly, a few students with low vision (n =10) were found to be reading at a distance closer than their near point of accommodation. This suggests a decreased sensitivity to blur. Further evaluation revealed that the equivalent intrinsic refractive errors (an estimate of the spherical dioptirc defocus which would be expected to yield a patient’s visual acuity in normal subjects) were significantly larger for the low vision group compared to those of the normal vision group. As expected, accommodative responses were significantly reduced for the low vision group compared to the expected norms, which is consistent with their close reading distances, reduced visual acuity and contrast sensitivity. For those in the low vision group who had an accommodative error exceeding their equivalent intrinsic refractive errors, a significant decrease in MORR was found following prolonged reading. The silent reading rates however were not significantly affected by accommodative errors in the present study. Suppression also had a significant impact on the changes in reading rates during prolonged reading. The participants who did not have suppression at near showed significant decreases in silent reading rates during and following prolonged reading. This impact of binocular vision at near on prolonged reading was possibly due to the high demands on convergence. The significant predictors of MORR in the low vision group were age, NTVA, reading interest and reading comprehension, accounting for 61.7% of the variances in MORR. SRR was not significantly influenced by any factors, except for the duration of the reading task sustained; participants with higher reading rates were able to sustain a longer reading duration. In students with normal vision, age was the only predictor of MORR. Participants with low vision also reported significantly greater visual fatigue compared to the normal vision group. Measures of tonic accommodation however were little influenced by visual fatigue in the present study. Visual fatigue analogue scores were found to be significantly associated with reading rates in students with low vision and normal vision. However, the patterns of association between visual fatigue and reading rates were different for SRR and MORR. The participants with low vision with higher symptom scores had lower SRRs and participants with higher visual fatigue had lower MORRs. As hypothesized, visual functions such as accuracy of accommodation and convergence did have an impact on prolonged reading in students with low vision, for students whose accommodative errors were greater than their equivalent intrinsic refractive errors, and for those who did not suppress one eye. Those students with low vision who have accommodative errors higher than their equivalent intrinsic refractive errors might significantly benefit from reading glasses. Similarly, considering prisms or occlusion for those without suppression might reduce the convergence demands in these students while using their close reading distances. The impact of these prescriptions on reading rates, reading interest and visual fatigue is an area of promising future research. Most importantly, it is evident from the present study that a combination of factors such as accommodative errors, near point of convergence and suppression should be considered when prescribing reading devices for students with low vision. Considering these factors would also assist rehabilitation specialists in identifying those students who are likely to experience difficulty in prolonged reading, which is otherwise not reflected during typical clinical reading assessments.
Resumo:
The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.
Resumo:
We measured wave aberrations over the central 42° x 32° visual field for a 5 mm pupil for groups of 10 emmetropic (mean spherical equivalent 0.11 ± 0.50 D) and 9 myopic (MSE -3.67 ± 1.91 D) young adults. Relative peripheral refractive errors over the measured field were generally myopic in both groups. Mean values of were almost constant across the measured field and were more positive in emmetropes (+0.023 ± 0.043 microns) than in myopes (-0.007 ± 0.045 microns). Coma varied more rapidly with field angle in myopes: modeling suggested that this difference reflected the differences in mean anterior corneal shape and axial length in the two groups. In general however, overall levels of RMS aberration differed only modestly between the two groups, implying that it is unlikely that high levels of aberration contribute to myopia development.
Resumo:
Purpose: The prevalence of refractive errors in children has been extensively researched. Comparisons between studies can, however, be compromised because of differences between accommodation control methods and techniques used for measuring refractive error. The aim of this study was to compare spherical refractive error results obtained at baseline and using two different accommodation control methods – extended optical fogging and cycloplegia, for two measurement techniques – autorefraction and retinoscopy. Methods: Participants comprised twenty-five school children aged between 6 and 13 years (mean age: 9.52 ± 2.06 years). The refractive error of one eye was measured at baseline and again under two different accommodation control conditions: extended optical fogging (+2.00DS for 20 minutes) and cycloplegia (1% cyclopentolate). Autorefraction and retinoscopy were both used to measure most plus spherical power for each condition. Results: A significant interaction was demonstrated between measurement technique and accommodation control method (p = 0.036), with significant differences in spherical power evident between accommodation control methods for each of the measurement techniques (p < 0.005). For retinoscopy, refractive errors were significantly more positive for cycloplegia compared to optical fogging, which were in turn significantly more positive than baseline, while for autorefraction, there were significant differences between cycloplegia and extended optical fogging and between cycloplegia and baseline only. Conclusions: Determination of refractive error under cycloplegia elicits more plus than using extended optical fogging as a method to relax accommodation. These findings support the use of cycloplegic refraction compared with extended optical fogging as a means of controlling accommodation for population based refractive error studies in children.
Resumo:
The aim of children's vision screenings is to detect visual problems that are common in this age category through valid and reliable tests. Nevertheless, the cost effectiveness of paediatric vision screenings, the nature of the tests included in the screening batteries and the ideal screening age has been the cause of much debate in Australia and worldwide. Therefore, the purpose of this review is to report on the current practice of children's vision screenings in Australia and other countries, as well as to evaluate the evidence for and against the provision of such screenings. This was undertaken through a detailed investigation of peer-reviewed publications on this topic. The current review demonstrates that there is no agreed vision screening protocol for children in Australia. This appears to be a result of the lack of strong evidence supporting the benefit of such screenings. While amblyopia, strabismus and, to a lesser extent refractive error, are targeted by many screening programs during pre-school and at school entry, there is less agreement regarding the value of screening for other visual conditions, such as binocular vision disorders, ocular health problems and refractive errors that are less likely to reduce distance visual acuity. In addition, in Australia, little agreement exists in the frequency and coverage of screening programs between states and territories and the screening programs that are offered are ad hoc and poorly documented. Australian children stand to benefit from improved cohesion and communication between jurisdictions and health professionals to enable an equitable provision of validated vision screening services that have the best chance of early detection and intervention for a range of paediatric visual problems.
Resumo:
There has been a low level of interest in peripheral aberrations and corresponding image quality for over 200 years. Most work has been concerned with the second-order aberrations of defocus and astigmatism that can be corrected with conventional lenses. Studies have found high levels of aberration, often amounting to several dioptres, even in eyes with only small central defocus and astigmatism. My investigations have contributed to understanding shape changes in the eye with increases in myopia, changes in eye optics with ageing, and how surgical interventions intended to correct central refractive errors have unintended effects on peripheral optics. My research group has measured peripheral second- and higher-order aberrations over a 42° horizontal × 32° vertical diameter visual field. There is substantial variation in individual aberrations with age and pathology. While the higher-order aberrations in the periphery are usually small compared with second-order aberrations, they can be substantial and change considerably after refractive surgery. The thrust of my research in the next few years is to understand more about the peripheral aberrations of the human eye, to measure visual performance in the periphery and determine whether this can be improved by adaptive optics correction, to use measurements of peripheral aberrations to learn more about the optics of the eye and in particular the gradient index structure of the lens, and to investigate ways of increasing the size of the field of good retinal image quality.
Resumo:
Myopia (short-sightedness) is a common ocular disorder of children and young adults. Studies primarily using animal models have shown that the retina controls eye growth and the outer retina is likely to have a key role. One theory is that the proportion of L (long-wavelength-sensitive) and M (medium-wavelength-sensitive) cones is related to myopia development; with a high L/M cone ratio predisposing individuals to myopia. However, not all dichromats (persons with red-green colour vision deficiency) with extreme L/M cone ratios have high refractive errors. We predict that the L/M cone ratio will vary in individuals with normal trichromatic colour vision but not show a systematic difference simply due to refractive error. The aim of this study was to determine if L/M cone ratios in the central 30° are different between myopic and emmetropic young, colour normal adults. Information about L/M cone ratios was determined using the multifocal visual evoked potential (mfVEP). The mfVEP can be used to measure the response of visual cortex to different visual stimuli. The visual stimuli were generated and measurements performed using the Visual Evoked Response Imaging System (VERIS 5.1). The mfVEP was measured when the L and M cone systems were separately stimulated using the method of silent substitution. The method of silent substitution alters the output of three primary lights, each with physically different spectral distributions to control the excitation of one or more photoreceptor classes without changing the excitation of the unmodulated photoreceptor classes. The stimulus was a dartboard array subtending 30° horizontally and 30° vertically on a calibrated LCD screen. The m-sequence of the stimulus was 215-1. The N1-P1 amplitude ratio of the mfVEP was used to estimate the L/M cone ratio. Data were collected for 30 young adults (22 to 33 years of age), consisting of 10 emmetropes (+0.3±0.4 D) and 20 myopes (–3.4±1.7 D). The stimulus and analysis techniques were confirmed using responses of two dichromats. For the entire participant group, the estimated central L/M cone ratios ranged from 0.56 to 1.80 in the central 3°-13° diameter ring and from 0.94 to 1.91 in the more peripheral 13°-30° diameter ring. Within 3°-13°, the mean L/M cone ratio of the emmetropic group was 1.20±0.33 and the mean was similar, 1.20±0.26, for the myopic group. For the 13°-30° ring, the mean L/M cone ratio of the emmetropic group was 1.48±0.27 and it was slightly lower in the myopic group, 1.30±0.27. Independent-samples t-test indicated no significant difference between the L/M cone ratios of the emmetropic and myopic group for either the central 3°-13° ring (p=0.986) or the more peripheral 13°-30° ring (p=0.108). The similar distributions of estimated L/M cone ratios in the sample of emmetropes and myopes indicates that there is likely to be no association between the L/M cone ratio and refractive error in humans.