79 resultados para Hyper-Random
Resumo:
Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.
Resumo:
Random Indexing K-tree is the combination of two algorithms suited for large scale document clustering.
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
This paper describes the approach taken to the clustering task at INEX 2009 by a group at the Queensland University of Technology. The Random Indexing (RI) K-tree has been used with a representation that is based on the semantic markup available in the INEX 2009 Wikipedia collection. The RI K-tree is a scalable approach to clustering large document collections. This approach has produced quality clustering when evaluated using two different methodologies.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
Quantitative studies of nascent entrepreneurs such as GEM and PSED are required to generate their samples by screening the adult population, usually by phone in developed economies. Phone survey research has recently been challenged by shifting patterns of ownership and response rates of landline versus mobile (cell) phones, particularly for younger respondents. This challenge is acutely intense for entrepreneurship which is a strongly age-dependent phenomenon. Although shifting ownership rates have received some attention, shifting response rates have remained largely unexplored. For the Australian GEM 2010 adult population study we conducted a dual-frame approach that allows comparison between samples of mobile and landline phones. We find a substantial response bias towards younger, male and metropolitan respondents for mobile phones – far greater than explained by ownership rates. We also found these response rate differences significantly biases the estimates of the prevalence of early stage entrepreneurship by both samples, even when each sample is weighted to match the Australian population.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
Objective: The global implementation of oral random roadside drug testing is relatively limited, and correspondingly, the literature that focuses on the effectiveness of this intervention is scant. This study aims to provide a preliminary indication of the impact of roadside drug testing in Queensland. Methods: A sample of Queensland motorists’ (N= 922) completed a self-report questionnaire to investigate their drug driving behaviour, as well as examine the perceived affect of legal sanctions (certainty, severity and swiftness) and knowledge of the countermeasure on their subsequent offending behaviour. Results: Analysis of the collected data revealed that approximately 20% of participants reported drug driving at least once in the last six months. Overall, there was considerable variability in respondent’s perceptions regarding the certainty, severity and swiftness of legal sanctions associated with the testing regime and a considerable proportion remained unaware of testing practices. In regards to predicting those who intended to drug driving again in the future, perceptions of apprehension certainty, more specifically low certainty of apprehension, were significantly associated with self-reported intentions to offend. Additionally, self-reported recent drug driving activity and frequent drug consumption were also identified as significant predictors, which indicates that in the current context, past behaviour is a prominent predictor of future behaviour. To a lesser extent, awareness of testing practices was a significant predictor of intending not to drug drive in the future. Conclusion: The results indicate that drug driving is relatively prevalent on Queensland roads, and a number of factors may influence such behaviour. Additionally, while the roadside testing initiative is beginning to have a deterrent impact, its success will likely be linked with targeted intelligence-led implementation in order to increase apprehension levels as well as the general deterrent effect.