26 resultados para Hydrate pockmark
Resumo:
The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.
Resumo:
The structure of 8-amino-2-naphthalenesulfonic acid monohydrate (1,7-Cleve's acid hydrate), C10H9NO3S.H2O, shows the presence of a sulfonate-aminium group zwitterion, both groups and the water molecule of solvation giving cyclic R3/3(8) intermolecular hydrogen-bonding interactions forming chains which extend down a axis of the unit cell. Additional peripheral associations, including weak aromatic ring pi-pi interactions [centroid-centroid distance 3.6299(15)A], result in a two-dimensional sheet structure.
Resumo:
The crystal structure of the hydrated proton-transfer compound of the drug quinacrine [rac-N'-(6-chloro-2-methoxyacridin-9-yl)-N,N-diethylpentane-1,4-diamine] with 4,5-dichlorophthalic acid, C23H32ClN3O2+ . 2(C8H3Cl2O4-).4H2O (I), has been determined at 200 K. The four labile water molecules of solvation form discrete ...O--H...O--H... hydrogen-bonded chains parallel to the quinacrine side chain, the two N--H groups of which act as hydrogen-bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two-dimensional sheets. Between these sheets there are also weak cation--anion and anion--anion pi-pi aromatic ring interactions. This structure represents only the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X-ray beam due to efflorescence, probably associated with the destruction of the unusual four-membered water chain structures.
Resumo:
The crystal structure of the 2:1 proton-transfer compound of brucine with biphenyl-4,4’-disulfonate, bis(2,3-dimethoxy-10-oxostrychnidinium) biphenyl-4,4'-disulfonate hexahydrate (1) has been determined at 173 K. Crystals are monoclinic, space group P21 with Z = 2 in a cell with a = 8.0314(2), b = 29.3062(9), c = 12.2625(3) Å, β = 101.331(2)o. The crystallographic asymmetric unit comprises two brucinium cations, a biphenyl-4,4'-disulfonate dianion and six water molecules of solvation. The brucinium cations form a variant of the common undulating and overlapping head-to-tail sheet sub-structure. The sulfonate dianions are also linked head-to-tail by hydrogen bonds into parallel zig-zag chains through clusters of six water molecules of which five are inter-associated, featuring conjoint cyclic eight-membered hydrogen-bonded rings [graph sets R33(8) and R34(8)], comprising four of the water molecules and closed by sulfonate O-acceptors. These chain structures occupy the cavities between the brucinium cation sheets and are linked to them peripherally through both brucine N+-H...Osulfonate and Ocarbonyl…H-Owater to sulfonate O bridging hydrogen bonds, forming an overall three-dimensional framework structure. This structure determination confirms the importance of water in the stabilization of certain brucine compounds which have inherent crystal instability.
Resumo:
In the structure of the title compound, [Mg(H2O)2(C8H6FO3)2]n(0.4H2O)n, slightly distorted octahedral MgO6 complex units have crystallographic inversion symmetry, the coordination polyhedron comprising two trans-related water molecules and four carboxyl O-atom donors, two of which are bridging. Within the two-dimensional complex polymer which is parallel to (100), the coordinating water molecules form intermolecular O---H...O hydrogen-bonds with carboxylate and phenoxy O-atom acceptors, as well as with the partial-occupancy solvent water molecules.
Resumo:
In the structure of the hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid), C9H7N+ C9H5INO4S- . 0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors 0.63 and 0.37) lying essentially within a common plane and with the ferron anions form pi-pi-associated stacks down the b axis (minimum ring centroid separation = 3.462(6)Ang.]. The cations and anions are linked into chains extending along c through hydroxyl O-H...O and quinolinium N-H...O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O-H...O hydrogen-bonding interactions down b giving a two-dimensional network structure.
Resumo:
It has been well established that organic compounds with adjacent hydroxyl groups in Bayer process liquor can inhibit gibbsite precipitation by acting as seed poisons. The degree of inhibition is a function of the number and stereochemistry of the hydroxyl groups. Seed poisons generally adsorb strongly onto hydrate surfaces, implying that surface coverage is the mechanism for yield inhibition. There are examples however of organics that strongly adsorb but do not lead to yield inhibition. There is a possibility that this apparent contradiction may be an artifact of differences in conditions between the adsorption and precipitation experiments. The present work investigates the adsorption and inhibition effects of a range of compounds under strictly similar conditions to clarify the role of adsorption on yield inhibition.
Resumo:
It is known that boehmite (AlOOH) nanofibers formed in the presence of nonionic poly(ethylene oxide) (PEO) surfactant at 373 K. A novel approach is proposed in this study for the growth of the boehmite nanofibers: when fresh aluminum hydrate precipitate was added at regular interval to initial mixture of boehmite and PEO surfactant at 373 K, the nanofibers grow from 40 to 50 nm long to over 100 nm. It is believed that the surfactant micelles play an important role in the nanofiber growth: directing the assembly of aluminum hydrate particles through hydrogen bonding with the hydroxyls on the surface of aluminum hydrate particles. Meanwhile a gradual improvement in the crystallinity of the fibers during growth is observed and attributed to the Ostwald ripening process. This approach allows us to precisely control the size and morphology of boehmite nanofibers using soft chemical methods and could be useful for low temperature, aqueous syntheses of other oxide nanomaterials with tailorable structural specificity such as size, dimension and morphology.
Resumo:
The crystal structure of the modified unsymmetrically N, N'-substituted viologen chromophore, N-ethyl- N'-(2-phosphonoethyl)-4, 4'-bipyridinium dichloride 0.75 hydrate. (1) has been determined. Crystals are triclinic, space group P-1 with Z = 2 in a cell with a = 7.2550(1), b = 13.2038(5), c = 18.5752(7) Å, α = 86.495(3), β = 83.527(2), γ = 88.921(2)o. The two independent but pseudo-symmetrically related cations in the asymmetric unit form one-dimensional hydrogen-bonded chains through short homomeric phosphonic acid O-H...O links [2.455(4), 2.464(4)A] while two of the chloride anions are similarly strongly linked to phosphonic acid groups [O-H…Cl, 2.889(4), 2.896(4)Å]. The other two chloride anions together with the two water molecules of solvation (one with partial occupancy) form unusual cyclic hydrogen-bonded bis(Cl...water) dianion units which lie between the layers of bipyridylium rings of the cation chain structures with which they are weakly associated.
Resumo:
The structures of proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine, namely triethylaminium 2-carboxy-4,5-dichlorobenzoate C~6~H~16~N^+^ C~8~H~3~Cl~2~O~4~^-^ (I), diethylaminium 2-carboxy-4,5-dichlorobenzoate C~4~H~12~N^+^ C~8~H~3~Cl~2~O~4~^-^ (II), bis(n-butylaminium) 4,5-dichlorophthalate monohydrate 2(C~4~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (III) and bis(piperidinium) 4,5-dichlorophthalate monohydrate 2(C~5~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (IV)have been determined at 200 K. All compounds have hydrogen-bonding associations giving in (I) discrete cation-anion units, linear chains in (II) while (III) and (IV) both have two-dimensional structures. In (I) a discrete cation-anion unit is formed through an asymmetric R2/1(4) N+-H...O,O' hydrogen-bonding association whereas in (II), one-dimensional chains are formed through linear N-H...O associations by both aminium H donors. In compounds (III) and (IV) the primary N-H...O linked cation-anion units are extended into a two-dimensional sheet structure via amide N-H...O(carboxyl) and ...O(carbonyl) interactions. In the 1:1 salts [(I) and (II)], the hydrogen 4,5-dichlorophthalate anions are essentially planar with short intramolecular carboxylic acid O-H...O(carboxyl) hydrogen bonds [O...O, 2.4223(14) and 2.388(2)A respectively]. This work provides a further example of the uncommon zero-dimensional hydrogen-bonded DCPA-Lewis base salt and the one-dimensional chain structure type, while even with the hydrate structures of the 1:2 salts with the primary and secondary amines, the low dimensionality generally associated with 1:1 DCPA salts is also found.
Resumo:
Calcium oxalate (CaOX) is the most intractable scale component to remove in sugar mill evaporators by either mechanical or chemical means. The operating conditions of sugar mill evaporators should preferentially favour the formation of the thermodynamically stable calcium oxalate monohydrate (COM), yet analysis of scale deposit from different sugar factories have shown that calcium oxalate dihydrate (COD) is usually the predominant phase, and in some cases is the only hydrate formed. The effects of trans-aconitic, succinic and acetic acids, all of which are present in sugarcane juice, and ethylenediamine tetraacetic acid disodium salt (EDTA) on the growth of CaOX crystals have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and thermogravimetric analysis (TGA). trans-Aconitic acid, which constitutes two-thirds of the organic acid component in sugarcane juice, in the presence of sugar resulted in the formation of COD and COM in a 3:1 ratio. EDTA was the most effective acid to promote the formation of COD followed by trans-aconitic acid, then acetic acid and lastly succinic acid.
Resumo:
In the structure of the title hydrate salt 2(CH6N3)+ C8H2Cl2O42- . H2O, the planes of the carboxylate groups of the dianion are rotated out of the plane of the benzene ring [dihedral angles 48.42(10) and 55.64(9)deg.]. A duplex-sheet structure is formed through guanidinium-carboxylate N-H...O, guanidinium-water N-H...O, and water-carboxylate O-H..O hydrogen-bonding associations.
Resumo:
The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.