427 resultados para Human Movement
Resumo:
Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.
Resumo:
This thesis was a step forward in extracting valuable features from human's movement behaviour in terms of space utilisation based on Media-Access-Control data. This research offered a low-cost and less computational complexity approach compared to existing human's movement tracking methods. This research was successfully applied in QUT's Gardens Point campus and can be scaled to bigger environments and societies. Extractable information from human's movement by this approach can add a significant value to studying human's movement behaviour, enhancing future urban and interior design, improving crowd safety and evacuation plans.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
Using Media-Access-Control (MAC) address for data collection and tracking is a capable and cost effective approach as the traditional ways such as surveys and video surveillance have numerous drawbacks and limitations. Positioning cell-phones by Global System for Mobile communication was considered an attack on people's privacy. MAC addresses just keep a unique log of a WiFi or Bluetooth enabled device for connecting to another device that has not potential privacy infringements. This paper presents the use of MAC address data collection approach for analysis of spatio-temporal dynamics of human in terms of shared space utilization. This paper firstly discuses the critical challenges and key benefits of MAC address data as a tracking technology for monitoring human movement. Here, proximity-based MAC address tracking is postulated as an effective methodology for analysing the complex spatio-temporal dynamics of human movements at shared zones such as lounge and office areas. A case study of university staff lounge area is described in detail and results indicates a significant added value of the methodology for human movement tracking. By analysis of MAC address data in the study area, clear statistics such as staff’s utilisation frequency, utilisation peak periods, and staff time spent is obtained. The analyses also reveal staff’s socialising profiles in terms of group and solo gathering. The paper is concluded with a discussion on why MAC address tracking offers significant advantages for tracking human behaviour in terms of shared space utilisation with respect to other and more prominent technologies, and outlines some of its remaining deficiencies.
Resumo:
In the study of complex neurobiological movement systems, measurement indeterminacy has typically been overcome by imposing artificial modelling constraints to reduce the number of unknowns (e.g., reducing all muscle, bone and ligament forces crossing a joint to a single vector). However, this approach prevents human movement scientists from investigating more fully the role, functionality and ubiquity of coordinative structures or functional motor synergies. Advancements in measurement methods and analysis techniques are required if the contribution of individual component parts or degrees of freedom of these task-specific structural units is to be established, thereby effectively solving the indeterminacy problem by reducing the number of unknowns. A further benefit of establishing more of the unknowns is that human movement scientists will be able to gain greater insight into ubiquitous processes of physical self-organising that underpin the formation of coordinative structures and the confluence of organismic, environmental and task constraints that determine the exact morphology of these special-purpose devices.
Resumo:
Previous work has shown that amplitude and direction are two independently controlled parameters of aimed arm movements, and performance, therefore, suffers when they must be decomposed into Cartesian coordinates. We now compare decomposition into different coordinate systems. Subjects pointed at visual targets in 2-D with a cursor, using a two-axis joystick or two single-axis joysticks. In the latter case, joystick axes were aligned with the subjects’ body axes, were rotated by –45°, or were oblique (i.e., one axis was in an egocentric frame and the other was rotated by –45°). Cursor direction always corresponded to joystick direction. We found that compared with the two-axis joystick, responses with single-axis joysticks were slower and less accurate when the axes were oriented egocentrically; the deficit was even more pronounced when the axes were rotated and was most pronounced when they were oblique. This confirms that decomposition of motor commands is computationally demanding and documents that this demand is lowest for egocentric, higher for rotated, and highest for oblique coordinates. We conclude that most current vehicles use computationally demanding man–machine interfaces.
Resumo:
Current train of thought in appetite research is favouring an interest in non-homeostatic or hedonic (reward) mechanisms in relation to overconsumption and energy balance. This tendency is supported by advances in neurobiology that precede the emergence of a new conceptual approach to reward where affect and motivation (liking and wanting) can be seen as the major force in guiding human eating behaviour. In this review, current progress in applying processes of liking and wanting to the study of human appetite are examined by discussing the following issues: How can these concepts be operationalised for use in human research to reflect the neural mechanisms by which they may be influenced? Do liking and wanting operate independently to produce functionally significant changes in behaviour? Can liking and wanting be truly experimentally separated or will an expression of one inevitably contain elements of the other? The review contains a re-examination of selected human appetite research before exploring more recent methodological approaches to the study of liking and wanting in appetite control. In addition, some theoretical developments are described in four diverse models that may enhance current understanding of the role of these processes in guiding ingestive behaviour. Finally, the implications of a dual process modulation of food reward for weight gain and obesity are discussed. The review concludes that processes of liking and wanting are likely to have independent roles in characterising susceptibility to weight gain. Further research into the dissociation of liking and wanting through implicit and explicit levels of processing would help to disclose the relative importance of these components of reward for appetite control and weight regulation.
Resumo:
Recombinant glucagon-like peptide-1 (7–36)amide (rGLP-1) was recently shown to cause significant weight loss in type 2 diabetics when administered for 6 weeks as a continuous subcutaneous infusion. The mechanisms responsible for the weight loss are not clarified. In the present study, rGLP-1 was given for 5d by prandial subcutaneous injections (PSI) (76nmol 30min before meals, four times daily; a total of 302·4nmol/24h) or by continuous subcutaneous infusion (CSI) (12·7nmol/h; a total of 304·8nmol/24h). This was performed in nineteen healthy obese subjects (mean age 44·2 (sem 2·5) years; BMI 39·0 (sem 1·2)kg/m2) in a prospective randomised, double-blind, placebo-controlled, cross-over study. Compared with the placebo, rGLP-1 administered as PSI and by CSI generated a 15% reduction in mean food intake per meal (P=0·02) after 5d treatment. A weight loss of 0·55 (sem 0·2) kg (P<0·05) was registered after 5d with PSI of rGLP-1. Gastric emptying rate was reduced during both PSI (P<0·001) and CSI (P<0·05) treatment, but more rapidly and to a greater extent with PSI of rGLP-1. To conclude, a 5d treatment of rGLP-1 at high doses by PSI, but not CSI, promptly slowed gastric emptying as a probable mechanism of action of increased satiety, decreased hunger and, hence, reduced food intake with an ensuing weight loss.
Resumo:
This study assessed the reliability and validity of a palm-top-based electronic appetite rating system (EARS) in relation to the traditional paper and pen method. Twenty healthy subjects [10 male (M) and 10 female (F)] — mean age M=31 years (S.D.=8), F=27 years (S.D.=5); mean BMI M=24 (S.D.=2), F=21 (S.D.=5) — participated in a 4-day protocol. Measurements were made on days 1 and 4. Subjects were given paper and an EARS to log hourly subjective motivation to eat during waking hours. Food intake and meal times were fixed. Subjects were given a maintenance diet (comprising 40% fat, 47% carbohydrate and 13% protein by energy) calculated at 1.6×Resting Metabolic Rate (RMR), as three isoenergetic meals. Bland and Altman's test for bias between two measurement techniques found significant differences between EARS and paper and pen for two of eight responses (hunger and fullness). Regression analysis confirmed that there were no day, sex or order effects between ratings obtained using either technique. For 15 subjects, there was no significant difference between results, with a linear relationship between the two methods that explained most of the variance (r2 ranged from 62.6 to 98.6). The slope for all subjects was less than 1, which was partly explained by a tendency for bias at the extreme end of results on the EARS technique. These data suggest that the EARS is a useful and reliable technique for real-time data collection in appetite research but that it should not be used interchangeably with paper and pen techniques.
Resumo:
This present paper reviews the reliability and validity of visual analogue scales (VAS) in terms of (1) their ability to predict feeding behaviour, (2) their sensitivity to experimental manipulations, and (3) their reproducibility. VAS correlate with, but do not reliably predict, energy intake to the extent that they could be used as a proxy of energy intake. They do predict meal initiation in subjects eating their normal diets in their normal environment. Under laboratory conditions, subjectively rated motivation to eat using VAS is sensitive to experimental manipulations and has been found to be reproducible in relation to those experimental regimens. Other work has found them not to be reproducible in relation to repeated protocols. On balance, it would appear, in as much as it is possible to quantify, that VAS exhibit a good degree of within-subject reliability and validity in that they predict with reasonable certainty, meal initiation and amount eaten, and are sensitive to experimental manipulations. This reliability and validity appears more pronounced under the controlled (but more arti®cial) conditions of the laboratory where the signal : noise ratio in experiments appears to be elevated relative to real life. It appears that VAS are best used in within-subject, repeated-measures designs where the effect of different treatments can be compared under similar circumstances. They are best used in conjunction with other measures (e.g. feeding behaviour, changes in plasma metabolites) rather than as proxies for these variables. New hand-held electronic appetite rating systems (EARS) have been developed to increase reliability of data capture and decrease investigator workload. Recent studies have compared these with traditional pen and paper (P&P) VAS. The EARS have been found to be sensitive to experimental manipulations and reproducible relative to P&P. However, subjects appear to exhibit a signi®cantly more constrained use of the scale when using the EARS relative to the P&P. For this reason it is recommended that the two techniques are not used interchangeably
Resumo:
Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.