101 resultados para Hordeum vulgare L., produtividade
Resumo:
Retrotransposons are a class of transposable elements that represent a major fraction of the repetitive DNA of most eukaryotes. Their abundance stems from their expansive replication strategies. We screened and isolated sequence fragments of long terminal repeat (LTR), gypsy-like reverse transcriptase (rt) and gypsy-like envelope (env) domains, and two partial sequences of non-LTR retrotransposons, long interspersed element (LINE), in the clonally propagated allohexaploid sweet potato (Ipomoea batatas (L.) Lam.) genome. Using dot-blot hybridization, these elements were found to be present in the ~1597 Mb haploid sweet potato genome with copy numbers ranging from ~50 to ~4100 as observed in the partial LTR (IbLtr-1) and LINE (IbLi-1) sequences, respectively. The continuous clonal propagation of sweet potato may have contributed to such a multitude of copies of some of these genomic elements. Interestingly, the isolated gypsy-like env and gypsy-like rt sequence fragments, IbGy-1 (~2100 copies) and IbGy-2 (~540 copies), respectively, were found to be homologous to the Bagy-2 cDNA sequences of barley (Hordeum vulgare L.). Although the isolated partial sequences were found to be homologous to other transcriptionally active elements, future studies are required to determine whether they represent elements that are transcriptionally active under normal and (or) stressful conditions.
Resumo:
The Yd2 gene for “resistance” to barley yellow dwarf virus (BYDV) has been widely used in barley (Hordeum vulgare). We have tested Australian isolates of BYDV of varying severity against barley genotypes with and without the Yd2 gene and report here a positive relationship between symptoms and virus levels determined by ELISA. Cultivar Shannon is the result of backcrossing the resistant line CI 3208 to cultivar Proctor, a susceptible line. It appears to be intermediate in reaction to BYDV between Proctor and CI 3208, although it carries the major gene, Yd2. Unlike the whole plant studies, no significant differences were observed with regard to the ability of protoplasts derived from these various genotypes to support BYDV replication. It is therefore demonstrated for the first time that the Yd2 gene is not among the small number of resistance genes which are effective against virus replication in isolated protoplasts.
Resumo:
We have characterised the subgenomic RNAs of an Australian isolate of BYDV-PAV. Northern blot analyses of infected plants and protoplasts have shown that this isolate synthesises three subgenomic RNAs. Precise mapping of the transcription start sites of all three subgenomic RNAs and translational analyses of subgenomic RNA 2 and 3 have revealed a number of features. First, the transcription start site of subgenomic RNA 1 in this isolate differs markedly from the start site determined for an Illinois isolate of BYDV-PAV. Second, the start sites of subgenomic RNA 1 and 2 occur at a sequence that closely resembles the 5' end sequence of the genomic RNA (5'AGUGAAGA). Third, subgenomic RNA 2 appears to express ORF 6 of BYDV-PAV but the gene product is truncated due to the appearance of a new stop codon in the sequence. Last, subgenomic RNA 3, which is abundantly transcribed and encapsidated by the virus particle, appears to have no coding ability. We postulate that this novel subgenomic RNA has a regulatory function.
Resumo:
A full-length cDNA clone of barley yellow dwarf virus (BYDV-PAV serotype) has been constructed and fused to the bacteriophage T7 RNA polymerase promoter. RNA transcripts produced in vitro, either capped or uncapped, were infectious in Triticum monococcum protoplasts. Protoplasts inoculated with in vitro-transcribed BYDV RNA accumulated coat protein, synthesized new viral RNAs, and produced virus particles. Aphid feeding on extracts from protoplasts inoculated with in vitro RNA transcripts can be used to transfer the virus progeny to whole plants. Introduction of mutations which interrupt specific BYDV-PAV open reading frames (ORFs) V and VI eliminated infectivity while an ORF I mutant remained infectious. Infectious RNA transcripts derived from BYDV cDNA clones will facilitate analysis of the molecular aspects of BYDV infection and further enhance our understanding of this economically important virus.
Resumo:
An RNA molecule with properties of a satellite RNA was found in an isolate of barley yellow dwarf virus (BYDV), RPV serotype. It is 322 nucleotides long, single-stranded, and does not hybridize to the viral genome. Dimers of the RNA, which presumably represent replicative intermediates, were able to self-cleave into monomers. In vitro transcripts from cDNA clones were capable of self-cleavage in both the plus (encapsidated) and minus orientations. The sequence flanking the minus strand cleavage site contained a consensus " hammerhead" structure, similar to those found in other self-cleaving satellite RNAs. Although related to the hammerhead structure, sequences flanking the plus strand termini showed differences from the consensus and may be folded into a different structure containing a pseudoknot. © 1991.
Resumo:
White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare ‘Betzes’). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8′OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8′OH1 in dormancy release. Reduced HvABA8′OH1 expression in transgenic HvABA8′OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.
Resumo:
This is the first report of an antibody-fusion protein expressed in transgenic plants for direct use in a medical diagnostic assay. By the use of gene constructs with appropriate promoters, high level expression of an anti-glycophorin single-chain antibody fused to an epitope of the HIV virus was obtained in the leaves and stems of tobacco, tubers of potato and seed of barley. This fusion protein replaces the SimpliRED™ diagnostic reagent, used for detecting the presence of HIV-1 antibodies in human blood. The reagent is expensive and laborious to produce by conventional means since chemical modifications to a monoclonal antibody are required. The plant-produced fusion protein was fully functional (by ELISA) in crude extracts and, for tobacco at least, could be used without further purification in the HIV agglutination assay. All three crop species produced sufficient reagent levels to be superior bioreactors to bacteria or mice, however barley grain was the most attractive bioreactor as it expressed the highest level (150 μg of reagent g-1), is inexpensive to produce and harvest, poses a minuscule gene flow problem in the field, and the activity of the reagent is largely undiminished in stored grain. This work suggests that barley seed will be an ideal factory for the production of antibodies, diagnostic immunoreagents, vaccines and other pharmaceutical proteins.
Resumo:
We have tested a methodology for the elimination of the selectable marker gene after Agrobacterium-mediated transformation of barley. This involves segregation of the selectable marker gene away from the gene of interest following co-transformation using a plasmid carrying two T-DNAs, which were located adjacent to each other with no intervening region. A standard binary transformation vector was modified by insertion of a small section composed of an additional left and right T-DNA border, so that the selectable marker gene and the site for insertion of the gene of interest (GOI) were each flanked by a left and right border. Using this vector three different GOIs were transformed into barley. Analysis of transgene inheritance was facilitated by a novel and rapid assay utilizing PCR amplification from macerated leaf tissue. Co-insertion was observed in two thirds of transformants, and among these approximately one quarter had transgene inserts which segregated in the next generation to yield selectable marker-free transgenic plants. Insertion of non-T-DNA plasmid sequences was observed in only one of fourteen SMF lines tested. This technique thus provides a workable system for generating transgenic barley free from selectable marker genes, thereby obviating public concerns regarding proliferation of these genes.
Resumo:
Barley yellow dwarf luteovirus-GPV (BYDV-GPV) is a common problem in Chinese wheat crops but is unrecorded elsewhere. A defining characteristic of GPV is its capacity to be transmitted efficiently by both Schizaphis graminum and Rhopaloshiphum padi. This dual aphid species transmission contrasts with those of BYDV-RPV and BYDV-SGV, globally distributed viruses, which are efficiently transmitted only by Rhopaloshiphum padi and Schizaphis graminum respectively. The viral RNA sequences encoding the coat protein (22K) gene, the movement protein (17K) gene, the region surrounding the conserved GDD motif of the polymerase gene and the intergenic sequences between these genes were determined for GPV and an Australian isolate of BYDV-RPV (RPVa). In all three genes, the sequences of GPV and RPVa were more similar to those of an American isolate of BYDV-RPV (RPVu) than to any other luteovirus for which there is data available. RPVa and RPVu were very similar, especially their coat proteins which had 97% identity at the amino acid level. The coat protein of GPV had 76% and 78% amino acid identity with RPVa and RPVu respectively. The data suggest that RPVu and RPVa are correctly named as strains of the same serotype and that GPV is sufficiently different from either RPV strain to be considered a distinct BYDV type. The coat protein and movement protein genes of GPV are very dissimilar to SGV. The polymerase sequences of RPVu, RPVa and GPV show close affinities with those of the sobemo-like luteoviruses and little similarity with those of the carmo-like luteoviruses. The sequences of the coat proteins, movement proteins and the polymerase segments of BYDV serotypes, other than RPV and GPV, form a cluster that is separate from their counterpart sequences from dicot-infecting luteoviruses. The RPV and GPV isolates consistently fall within a dicot-infecting cluster. This suggests that RPV and GPV evolved from within this group of viruses. Since these other viruses all infect dicots it seems likely that their common ancestor infected a dicot and that RPV and GPV evolved from a virus that switched hosts from a dicot to a monocot.
Resumo:
Agent-oriented conceptual modelling (AoCM) approaches in Requirements Engineering (RE) have received considerable attention recently. Semi-formal modeling frameworks such as i* assist analysts in requirements elicitation and reasoning of early-phase RE. AgentSpeak(L) is a widely accepted agent programming language. The Strategic Rationale (SR) model of the i* framework naturally lends itself to AgentSpeak(L) programs. Furthermore, the Strategic Dependency (SD) component of the i* framework prescribes the interaction between the agents in a multi-agent environment. This paper proposes a formal methodology for transforming a SR model to an AgentS- peak(L) agent. The constructed AgentSpeak(L) agents will then form the essential components of a multi-agent system, MAS.