24 resultados para Herbicides.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective removal of pollutants using a thermally and chemically stable substrate that has controllable absorption properties is a goal of water treatment. In this study, the surfaces of thin alumina (γ-Al2O3) nanofibres were modified by the grafting either of two organosilane agents, 3-chloro-propyl-triethoxysilane (CPTES) and octyl-triethoxysilane (OTES). These modified materials were then trialed as absorbents for the removal of two herbicides, alachlor and imazaquin from water. The formation of organic groups during the functionalisation process established super hydrophobic sites on the surfaces of the nanofibres. This super hydrophobic group is a kind of protruding adsorption site which facilitates the intimate contact with the pollutants. OTES grafted substrate were shown to be more selective for alachlor while imazaquin selectivity is shown by the CPTES grafted substrate. Kinetics studies revealed that imazaquin was rapidly adsorbed on CPTES-modified surfaces. However, the adsorption of alachlor by OTES grafted surface was achieved more slowly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential pulse stripping voltammetry method(DPSV) was applied to the determination of three herbicides, ametryn, cyanatryn, and dimethametryn. It was found that their voltammograms overlapped strongly, and it is difficult to determine these compounds individually from their mixtures. With the aid of chemometrics, classical least squares(CLS), principal component regression(PCR) and partial least squares(PLS), voltammogram resolution and quantitative analysis of the synthetic mixtures of the three compounds were successfully performed. The proposed method was also applied to the analysis of some real samples with satisfactory results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials consisting of anatase linked to Laponite particles were synthesized by the reaction of TiOSO4 with Laponite, and were used for the degradation of pesticides. All these materials were characterized by XRD, FTIR, Raman, TEM, specific surface area and porosity determinations. Based on the amount of photoactive phase per unit mass of the clay mineral, not based on the total weight of the catalysts, these porous catalysts were displaying a high degradation rate than commercial P25. The TiO2 immobilized clay mineral catalysts can sediment in few minutes and could be readily separated out from a slurry system after the photocatalytic reaction. Settling properties of these catalysts are enormously high in aqueous media in contrast to P25.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of packed micro paddy lysimeters, placed in a greenhouse, was used to simulate the dissipation of two herbicides, simetryn and thiobencarb, in a controlled environment. Data from a field monitoring study in 2003, including the soil condition and water balances, were used in the simulation. The herbicides were applied and monitored over a period of 21 d. The water balances under two water management scenarios, intermittent irrigation management (AI) and continuous irrigation management (CI), were simulated. In the AI scenario, the pattern of herbicide dissipation in the surface water of the field were simulated, following the first-order kinetics. In the CI scenario, similarity was observed in most lysimeter and field concentrations, but there were differences in some data points. Dissipation curves of both herbicides in the surface water of the two simulated scenarios were not significantly different (P > 0.05) from the field data except for intercept of the thiobencarb curve in the CI scenario. The distribution of simetryn and thiobencarb in the soil profile after simulation were also similar to the field data. The highest concentrations of both herbicides were found on the topsoil layer at 0-2.5 cm depth. Only a small amount of herbicides moved down to the deeper soil layers. Micro paddy lysimeters are thus a good alternative for the dissipation study of pesticides in the paddy environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the procedures for probabilistic assessment of a pesticide fate and transport model, PCPF-1, to elucidate the modeling uncertainty using the Monte Carlo technique. Sensitivity analyses are performed to investigate the influence of herbicide characteristics and related soil properties on model outputs using four popular rice herbicides: mefenacet, pretilachlor, bensulfuron-methyl and imazosulfuron. Uncertainty quantification showed that the simulated concentrations in paddy water varied more than those of paddy soil. This tendency decreased as the simulation proceeded to a later period but remained important for herbicides having either high solubility or a high 1st-order dissolution rate. The sensitivity analysis indicated that PCPF-1 parameters requiring careful determination are primarily those involve with herbicide adsorption (the organic carbon content, the bulk density and the volumetric saturated water content), secondary parameters related with herbicide mass distribution between paddy water and soil (1st-order desorption and dissolution rates) and lastly, those involving herbicide degradations. © Pesticide Science Society of Japan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research underlines the extensive application of nanostructured metal oxides in environmental systems such as hazardous waste remediation and water purification. This study tries to forge a new understanding of the complexity of adsorption and photocatalysis in the process of water treatment. Sodium niobate doped with a different amount of tantalum, was prepared via a hydrothermal reaction and was observed to be able to adsorb highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ions. This study facilitates the preparation of Nb-based adsorbents for efficiently removing toxic radioactive ions from contaminated water and also identifies the importance of understanding the influence of heterovalent substitution in microporous frameworks. Clay adsorbents were prepared via a two-step method to remove anionic and non-ionic herbicides from water. Firstly, layered beidellite clay was treated with acid in a hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted onto the acid treated samples to prepare the adsorption materials. In order to isolate the effect of the clay surface, we compared the adsorption property of clay adsorbents with ƒ×-Al2O3 nanofibres grafted with the same functional groups. Thin alumina (£^-Al2O3) nanofibres were modified by the grafting of two organosilane agents 3-chloropropyltriethoxysilane and octyl triethoxysilane onto the surface, for the adsorptive removal of alachlor and imazaquin herbicides from water. The formation of organic groups during the functionalisation process established super hydrophobic sites along the surfaces and those non-polar regions of the surfaces were able to make close contact with the organic pollutants. A new structure of anatase crystals linked to clay fragments was synthesised by the reaction of TiOSO4 with laponite clay for the degradation of pesticides. Based on the Ti/clay ratio, these new catalysts showed a high degradation rate when compared with P25. Moreover, immobilized TiO2 on laponite clay fragments could be readily separated out from a slurry system after the photocatalytic reaction. Using a series of partial phase transition methods, an effective catalyst with fibril morphology was prepared for the degradation of different types of phenols and trace amount of herbicides from water. Both H-titanate and TiO2-(B) fibres coated with anatase nanocrystal were studied. When compared with a laponite clay photocatalyst, it was found that anatase dotted TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior in performance in photocatalysis but could also be readily separated from a slurry system after photocatalytic reactions. This study has laid the foundation for the development of the ability to fabricate highly efficient nanostructured solids for the removal of radioactive ions and organic pollutants from contaminated water. These results now seem set to contribute to the development of advanced water purification devices in the future. These modified nanostructured materials with unusual properties have broadened their application range beyond their traditional use as adsorbents, to also encompass the storage of nuclear waste after concentrating from contaminated water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photochemistry has made significant contributions to our understanding of many important natural processes as well as the scientific discoveries of the man-made world. The measurements from such studies are often complex and may require advanced data interpretation with the use of multivariate or chemometrics methods. In general, such methods have been applied successfully for data display, classification, multivariate curve resolution and prediction in analytical chemistry, environmental chemistry, engineering, medical research and industry. However, in photochemistry, by comparison, applications of such multivariate approaches were found to be less frequent although a variety of methods have been used, especially with spectroscopic photochemical applications. The methods include Principal Component Analysis (PCA; data display), Partial Least Squares (PLS; prediction), Artificial Neural Networks (ANN; prediction) and several models for multivariate curve resolution related to Parallel Factor Analysis (PARAFAC; decomposition of complex responses). Applications of such methods are discussed in this overview and typical examples include photodegradation of herbicides, prediction of antibiotics in human fluids (fluorescence spectroscopy), non-destructive in- and on-line monitoring (near infrared spectroscopy) and fast-time resolution of spectroscopic signals from photochemical reactions. It is also quite clear from the literature that the scope of spectroscopic photochemistry was enhanced by the application of chemometrics. To highlight and encourage further applications of chemometrics in photochemistry, several additional chemometrics approaches are discussed using data collected by the authors. The use of a PCA biplot is illustrated with an analysis of a matrix containing data on the performance of photocatalysts developed for water splitting and hydrogen production. In addition, the applications of the Multi-Criteria Decision Making (MCDM) ranking methods and Fuzzy Clustering are demonstrated with an analysis of water quality data matrix. Other examples of topics include the application of simultaneous kinetic spectroscopic methods for prediction of pesticides, and the use of response fingerprinting approach for classification of medicinal preparations. In general, the overview endeavours to emphasise the advantages of chemometrics' interpretation of multivariate photochemical data, and an Appendix of references and summaries of common and less usual chemometrics methods noted in this work, is provided. Crown Copyright © 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis offered a step forward in the development of cheap and effective materials for water treatment. It described the modification of naturally abundant clay minerals with organic molecules, and used the modified clays as effective adsorbents for the removal of recalcitrant organic water pollutants. The outcome of the study greatly extended our understanding of the synthesis and characteristic properties of clay and modified clay minerals, provided optimistic evaluation of the modified clays for environmental remediation and offered potential utility for clay minerals in the industry and environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Da Nang Airbase in Viet Nam served as a bulk storage and supply facility for Agent Orange and other herbicides during Operation Ranch Hand 1961-1971[1]. Studies have shown that environmental and biological samples taken around the airbase site have elevated levels of dioxin [1-3]. Residents living in the vicinity of the airbase are at risk of exposure to dioxin in soil, water and mud and particularly through the consumption of local contaminated food. In 2009, a pre-intervention cross sectional survey was undertaken. This survey examined the knowledge, attitudes and practices (KAP) of householders living near Da Nang Airbase, relevent to reducing dioxin exposure through contaminated food. The results showed that despite living near a severe dioxin hot spot, the residents had very limited knowledge of both exposure risk and measures to reduce exposure to dioxin[4]. In response, the Vietnam Public Health Association (VPHA) and Da Nang Public Health Association implemented a risk reduction program at four residential wards in the vicinities of the Da Nang Airbase in 2010. A post intervention KAP survey was under taken in 2011, and the results showed that knowledge of the existence of dioxin in food, dioxin exposure pathways, potential high risk foods, and preventive measures was significantly enhanced. This new study monitored KAP 2.5 years after the intervention through a 2013 survey of food handlers from 400 households that were randomly selected from the four intervention wards. The results show that most of the positive outcomes remained stable or had increased; some KAP indicators decreased compared to those in the post-intervention survey, but were still significantly higher than the pre-intervention levels. In 2014, these findings will be incorporated with qualitative assessments and the results of laboratory analysis of dioxin concentrations in foods in Da Nang and Bien Hoa dioxin hot spots to comprehensively assess the sustained effects of the intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH-sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2-6.2) than under neutral and moderately alkaline conditions (8.2-9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo-first-order kinetics. There were no significant differences (P =0.05) in the rate constants (k, day-1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the 'rate constant' on pH. The hydrolysis involving attack by neutral water was at least 100-fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O-demethylation of metsulfuron-methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural (C) 2000 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anhydrous salts of 1H-indole-3-ethanamine (tryptamine) with isomeric (2,4-dichlorophenoxy)acetic acid (2,4-D) and (3,5-dichlorophenoxy)acetic (3,5-D), C10H13N2+ (C8H5Cl2O3)-, [(I) and (II), respectively] have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I),the aminium H-atoms are involved in three separate inter-species N-H...O hydrogen-bonding interactions, two with carboxyl O-atom acceptors and the third in an asymmetric three-centre bidentate carboxyl O,O' chelate [graph set R2/1(4)]. The indole H-atom forms an N-H...O~carboxyl~ hydrogen bond, extending the chain structure along the b axial direction. In (II), two of the three aminium H-atoms are also involved in N-H...O(carboxyl) hydrogen bonds similar to (I) but with the third, a three-centre asymmetric interaction with carboxyl and phenoxy O-atoms is found [graph set R2/1(5)]. The chain polymeric extension is also along b. There are no pi--pi ring interactions in either of the structures. The aminium side chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fate and transport of three herbicides commonly used in rice production in Japan were compared using two water management practices. The herbicides were simetryn, thiobencarb and mefenacet. The first management practice was an intermittent irrigation scheme using an automatic irrigation system (AI) with a high drainage gate and the second one was a continuous irrigation and overflow drainage scheme (CI) in experimental paddy fields. Dissipation of the herbicides appeared to follow first order kinetics with the half-lives (DT50) of 1.6-3.4 days and the DT90 (90% dissipation) of 7.4-9.8 days. The AI scheme had little drainage even during large rainfall events thus resulting in losses of less than 4% of each applied herbicide through runoff. Meanwhile the CI scheme resulted in losses of about 37%, 12% and 35% of the applied masses of simetryn, thiobencarb and mefenacet, respectively. The intermittent irrigation scheme using an automatic irrigation system with a high drainage gate saved irrigation water and prevented herbicide runoff whereas the continuous irrigation and overflow scheme resulted in significant losses of water as well as the herbicides. Maintaining the excess water storage is important for preventing paddy water runoff during significant rainfall events. The organic carbon partition coefficient Koc seems to be a strong indicator of the aquatic fate of the herbicide as compared to the water solubility (SW). However, further investigations are required to understand the relation between Koc and the agricultural practices upon the pesticide fate and transport. An extension of the water holding period up to 10 days after herbicide application based on the DT90 from the currently specified period of 3-4 days in Japan is recommended to be a good agricultural practice for controlling the herbicide runoff from paddy fields. Also, the best water management practice, which can be recommended for use during the water holding period, is the intermittent irrigation scheme using an automatic irrigation system with a high drainage gate. © 2006 Elsevier B.V. All rights reserved.