147 resultados para Heat treating furnaces
Resumo:
Background: Conventional biodiesel production relies on trans-esterification of lipids extracted from vegetable crops. However, the use of valuable vegetable food stocks as raw material for biodiesel production makes it an unfeasibly expensive process. Used cooking oil is a finite resource and requires extra downstream processing, which affects the amount of biodiesel that can be produced and the economics of the process. Lipids extracted from microalgae are considered an alternative raw material for biodiesel production. This is primarily due to the fast growth rate of these species in a simple aquaculture environment. However, the dilute nature of microalgae culture puts a huge economic burden on the dewatering process especially on an industrial scale. This current study explores the performance and economic viability of chemical flocculation and tangential flow filtration (TFF) for the dewatering of Tetraselmis suecicamicroalgae culture. Results: Results show that TFF concentrates the microalgae feedstock up to 148 times by consuming 2.06 kWh m-3 of energy while flocculation consumes 14.81 kWhm-3 to concentrate the microalgae up to 357 times. Economic evaluation demonstrates that even though TFF has higher initial capital investment than polymer flocculation, the payback period for TFF at the upper extreme ofmicroalgae revenue is ∼1.5 years while that of flocculation is ∼3 years. Conclusion: These results illustrate that improved dewatering levels can be achieved more economically by employing TFF. The performances of these two techniques are also compared with other dewatering techniques.
Resumo:
A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between -50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.
Resumo:
Experiments were undertaken to study drying kinetics of moist cylindrical shaped food particulates during fluidised bed drying. Cylindrical particles were prepared from Green beans with three different length:diameter ratios, 3:1, 2:1 and 1:1. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.
Resumo:
The climatic conditions of tropical and subtropical regions within Australia present, at times, extreme risk of physical activity induced heat illness. Many administrators and teachers in school settings are aware of the general risks of heat related illness. In the absence of reliable information applied at the local level, there is a risk that inappropriate decisions may be made concerning school events that incorporate opportunities to be physically active. Such events may be prematurely cancelled resulting in the loss of necessary time for physical activity. Under high or extremely high risk conditions however, the absence of appropriate modifications or continuation could place the health of students, staff and other parties at risk. School staff and other key stakeholders should understand the mechanisms of escalating risk and be supported to undertake action to reduce the level of risk through appropriate policies, procedures, resources and action plans.
Resumo:
Objective - We report the first randomised controlled trial (RCT) using a combination of St. John’s wort (SJW) and Kava for the treatment of major depressive disorder (MDD) with comorbid anxiety. Methods - Twenty-eight adults with MDD and co-occurring anxiety were recruited for a double-blind RCT. After a placebo run-in of 2 weeks, the trial had a crossover design testing SJW and Kava against placebo over two controlled phases, each of 4 weeks. The primary analyses used intention-to-treat and completer analyses. Results - On both intention-to-treat ( p¼0.047) and completer analyses ( p¼0.003), SJW and Kava gave a significantly greater reduction in self-reported depression on the Beck Depression Inventory (BDI-II) over placebo in the first controlled phase. However, in the crossover phase, a replication of those effects in the delayed medication group did not occur. Nor were there significant effects on anxiety or quality of life. Conclusion - There was some evidence of antidepressant effects using SJW and Kava in a small sample with comorbid anxiety. Possible explanations for the absence of anxiolysis may include a potential interaction with SJW, the presence of depression, or an inadequate dose of Kava.
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
Experiments were undertaken to study drying kinetics of different shaped moist food particulates during heat pump assisted fluidised bed drying. Three particular geometrical shapes of parallelepiped, cylindrical and spheres were selected from potatoes (aspect ratio = 1:1, 2:1, 3:1), cut beans (length: diameter = 1:1, 2:1, 3:1) and peas respectively. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Due to complex hydrodynamics of the fluidised beds, drying kinetics are dryer or material specific. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.
Resumo:
Most studies on the characterisation of deposits on heat exchangers have been based on bulk analysis, neglecting the fine structural features and the compositional profiles of layered deposits. Attempts have been made to fully characterise a fouled stainless steel tube obtained from a quintuple Roberts evaporator of a sugar factory using X-ray diffraction and scanning electron microscopy techniques. The deposit contains three layers at the bottom of the tube and two layers on the other sections and is composed of hydroxyapatite, calcium oxalate dihydrate and an amorphous material. The proportions of these phases varied along the tube height. Energy-dispersive spectroscopy and XRD analysis on the surfaces of the outermost and innermost layers showed that hydroxyapatite was the major phase attached to the tube wall, while calcium oxalate dihydrate (with pits and voids) was the major phase on the juice side. Elemental mapping of the cross-sections of the deposit revealed the presence of a mineral, Si-Mg-Al-Fe-O, which is probably a silicate mineral. Reasons for the defects in the oxalate crystal surfaces, the differences in the crystal size distribution from bottom to the top of the tube and the composite fouling process have been postulated.