337 resultados para Genetic association studies
Resumo:
BACKGROUND There has been intensive debate whether migraine with aura (MA) and migraine without aura (MO) should be considered distinct subtypes or part of the same disease spectrum. There is also discussion to what extent migraine cases collected in specialised headache clinics differ from cases from population cohorts, and how female cases differ from male cases with respect to their migraine. To assess the genetic overlap between these migraine subgroups, we examined genome-wide association (GWA) results from analysis of 23,285 migraine cases and 95,425 population-matched controls. METHODS Detailed heterogeneity analysis of single-nucleotide polymorphism (SNP) effects (odds ratios) between migraine subgroups was performed for the 12 independent SNP loci significantly associated (p < 5 x 10(-8); thus surpassing the threshold for genome-wide significance) with migraine susceptibility. Overall genetic overlap was assessed using SNP effect concordance analysis (SECA) at over 23,000 independent SNPs. RESULTS: Significant heterogeneity of SNP effects (p het < 1.4 x 10(-3)) was observed between the MA and MO subgroups (for SNP rs9349379), and between the clinic- and population-based subgroups (for SNPs rs10915437, rs6790925 and rs6478241). However, for all 12 SNPs the risk-increasing allele was the same, and SECA found the majority of genome-wide SNP effects to be in the same direction across the subgroups. CONCLUSIONS Any differences in common genetic risk across these subgroups are outweighed by the similarities. Meta-analysis of additional migraine GWA datasets, regardless of their major subgroup composition, will identify new susceptibility loci for migraine.
ssSNPer: identifying statistically similar SNPs to aid interpretation of genetic association studies
Resumo:
ssSNPer is a novel user-friendly web interface that provides easy determination of the number and location of untested HapMap SNPs, in the region surrounding a tested HapMap SNP, which are statistically similar and would thus produce comparable and perhaps more significant association results. Identification of ssSNPs can have crucial implications for the interpretation of the initial association results and the design of follow-up studies. AVAILABILITY: http://fraser.qimr.edu.au/general/daleN/ssSNPer/
Resumo:
Objectives: To replicate the possible genetic association between ankylosing spondylitis (AS) and TNFRSF1A. Methods: TNFRSF1A was re-sequenced in 48 individuals with AS to identify novel polymorphisms. Nine single nucleotide polymorphisms (SNPs) in TNFRSF1A and 5 SNPs in the neighbouring gene SCNN1A were genotyped in 1604 UK Caucasian individuals with AS and 1019 matched controls. An extended study was implemented using additional genotype data on 8 of these SNPs from 1400 historical controls from the 1958 British Birth Cohort. A meta-analysis of previously published results was also undertaken. Results: One novel variant in intron 6 was identified but no new coding variants. No definite associations were seen in the initial study but in the extended study there were weak associations with rs4149576 (p=0.04) and rs4149577 (p=0.007). In the metaanalysis consistent, somewhat stronger associations were seen with rs4149577 (p=0.002) and rs4149578 (p=0.006). Conclusions: These studies confirm the weak genetic associations between AS and TNFRSF1A. In view of the previously reported associations of TNFRSF1A with AS, in Caucasians and Chinese, and the biological plausibility of this candidate gene, replication of this finding in well powered studies is clearly indicated.
Resumo:
Imaging genetics aims to discover how variants in the human genome influence brain measures derived from images. Genome-wide association scans (GWAS) can screen the genome for common differences in our DNA that relate to brain measures. In small samples, GWAS has low power as individual gene effects are weak and one must also correct for multiple comparisons across the genome and the image. Here we extend recent work on genetic clustering of images, to analyze surface-based models of anatomy using GWAS. We performed spherical harmonic analysis of hippocampal surfaces, automatically extracted from brain MRI scans of 1254 subjects. We clustered hippocampal surface regions with common genetic influences by examining genetic correlations (r(g)) between the normalized deformation values at all pairs of surface points. Using genetic correlations to cluster surface measures, we were able to boost effect sizes for genetic associations, compared to clustering with traditional phenotypic correlations using Pearson's r.
Resumo:
BACKGROUND: Menstrual migraine (MM) encompasses pure menstrual migraine (PMM) and menstrually-related migraine (MRM). This study was aimed at investigating genetic variants that are potentially related to MM, specifically undertaking genotyping and mRNA expression analysis of the ESR1, PGR, SYNE1 and TNF genes in MM cases and non-migraine controls. METHODS: A total of 37 variants distributed across 14 genes were genotyped in 437 DNA samples (282 cases and 155 controls). In addition levels of gene expression were determined in 74 cDNA samples (41 cases and 33 controls). Association and correlation analysis were performed using Plink and RStudio. RESULTS: SNPs rs3093664 and rs9371601 in TNF and SYNE1 genes respectively, were significantly associated with migraine in the MM population (p = 0.008; p = 0.009 respectively). Analysis of qPCR results found no significant difference in levels of gene expression between cases and controls. However, we found a significant correlation between the expression of ESR1 and SYNE1, ESR1 and PGR and TNF and SYNE1 in samples taken during the follicular phase of the menstrual cycle. CONCLUSIONS: Our results show that SNPs rs9371601 and rs3093664 in the SYNE1 and TNF genes respectively, are associated with MM. The present study also provides strong evidence to support the correlation of ESR1, PGR, SYNE1 and TNF gene expression in MM.
Resumo:
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of approximately 2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 x 10(-8) to P = 4 x 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
Resumo:
Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS including 5953 cases of aggressive PrCa and 11 463 controls (men without PrCa). We computed association tests for approximately 2.6 million SNPs and followed up the most significant SNPs by genotyping 49 121 samples in 29 studies through the international PRACTICAL and BPC3 consortia. We not only confirmed the association of a PrCa susceptibility locus, rs11672691 on chromosome 19, but also showed an association with aggressive PrCa [odds ratio = 1.12 (95% confidence interval 1.03-1.21), P = 1.4 × 10(-8)]. This report describes a genetic variant which is associated with aggressive PrCa, which is a type of PrCa associated with a poorer prognosis.
Resumo:
The Kallikrein-related peptidase, KLK4, has been shown to be significantly overexpressed in prostate tumours in numerous studies and is suggested to be a potential biomarker for prostate cancer. KLK4 may also play a role in prostate cancer progression through its involvement in epithelial-mesenchymal transition, a more aggressive phenotype, and metastases to bone. It is well known that genetic variation has the potential to affect gene expression and/or various protein characteristics and hence we sought to investigate the possible role of single nucleotide polymorphisms (SNPs) in the KLK4 gene in prostate cancer. Assessment of 61 SNPs in the KLK4 locus (±10 kb) in approximately 1300 prostate cancer cases and 1300 male controls for associations with prostate cancer risk and/or prostate tumour aggressiveness (Gleason score <7 versus ≥7) revealed 7 SNPs to be associated with a decreased risk of prostate cancer at the Ptrend<0.05 significance level. Three of these SNPs, rs268923, rs56112930 and the HapMap tagSNP rs7248321, are located several kb upstream of KLK4; rs1654551 encodes a non-synonymous serine to alanine substitution at position 22 of the long isoform of the KLK4 protein, and the remaining 3 risk-associated SNPs, rs1701927, rs1090649 and rs806019, are located downstream of KLK4 and are in high linkage disequilibrium with each other (r2≥0.98). Our findings provide suggestive evidence of a role for genetic variation in the KLK4 locus in prostate cancer predisposition.
Resumo:
The candidate gene approach has been a pioneer in the field of genetic epidemiology, identifying risk alleles and their association with clinical traits. With the advent of rapidly changing technology, there has been an explosion of in silico tools available to researchers, giving them fast, efficient resources and reliable strategies important to find casual gene variants for candidate or genome wide association studies (GWAS). In this review, following a description of candidate gene prioritisation, we summarise the approaches to single nucleotide polymorphism (SNP) prioritisation and discuss the tools available to assess functional relevance of the risk variant with consideration to its genomic location. The strategy and the tools discussed are applicable to any study investigating genetic risk factors associated with a particular disease. Some of the tools are also applicable for the functional validation of variants relevant to the era of GWAS and next generation sequencing (NGS).
Resumo:
Rationale: Asthma has substantial morbidity and mortality and a strong genetic component, but identification of genetic risk factors is limited by availability of suitable studies. Objectives: To test if population-based cohorts with self-reported physician-diagnosed asthma and genome-wide association (GWA) data could be used to validate known associations with asthma and identify novel associations. Methods: The APCAT (Analysis in Population-based Cohorts of Asthma Traits) consortium consists of 1,716 individuals with asthma and 16,888 healthy controls from six European-descent population-based cohorts. We examined associations in APCAT of thirteen variants previously reported as genome-wide significant (P<5x10-8) and three variants reported as suggestive (P<5×10-7). We also searched for novel associations in APCAT (Stage 1) and followed-up the most promising variants in 4,035 asthmatics and 11,251 healthy controls (Stage 2). Finally, we conducted the first genome-wide screen for interactions with smoking or hay fever. Main Results: We observed association in the same direction for all thirteen previously reported variants and nominally replicated ten of them. One variant that was previously suggestive, rs11071559 in RORA, now reaches genome-wide significance when combined with our data (P = 2.4×10-9). We also identified two genome-wide significant associations: rs13408661 near IL1RL1/IL18R1 (PStage1+Stage2 = 1.1x10-9), which is correlated with a variant recently shown to be associated with asthma (rs3771180), and rs9268516 in the HLA region (PStage1+Stage2 = 1.1x10-8), which appears to be independent of previously reported associations in this locus. Finally, we found no strong evidence for gene-environment interactions with smoking or hay fever status. Conclusions: Population-based cohorts with simple asthma phenotypes represent a valuable and largely untapped resource for genetic studies of asthma. © 2012 Ramasamy et al.
Resumo:
Genome-wide association studies (GWAS) are a powerful hypothesis-free tool for the dissection of susceptibility to common heritable human diseases, including osteoporosis. To date, more than 2000 loci for common human diseases have been identified by GWAS. Success using the GWAS model depends on genetic risk being determined by shared stretches of DNA carried with different frequencies in cases and controls, inherited from ancient ancestors, termed the “common disease–common variant” hypothesis. Not all disease risk is caused by common variants, however, and thus GWAS will not detect all variants involved. Successful GWAS performance requires careful quality control, especially as the effect sizes under study are modest, and there are multiple potential sources of error. Conservative interpretation, use of stringent significance thresholds, and replication in independent cohorts are required to ensure results are robust. Despite these challenging parameters, much has been learnt from GWAS and, as the approach matures and is modified to identify a wider range of variants, significantly more will be learnt about the etiopathogenesis of common diseases such as osteoporosis.
Resumo:
A strong association between ERAP1 and ankylosing spondylitis (AS) was recently identified by the Wellcome Trust Case Control Consortium and the Australo-Anglo-American Spondylitis Consortium (WTCCC-TASC) study. ERAP1 is highly polymorphic with strong linkage disequilibrium evident across the gene. We therefore conducted a series of experiments to try to identify the primary genetic association(s) with ERAP1. We replicated the original associations in an independent set of 730 patients and 1021 controls, resequenced ERAP1 to define the full extent of coding polymorphisms and tested all variants in additional association studies. The genetic association with ERAP1 was independently confirmed; the strongest association was with rs30187 in the replication set (P = 3.4 × 103). When the data were combined with the original WTCCC-TASC study the strongest association was with rs27044 (P = 1.1 × 10-9). We identified 33 sequence polymorphisms in ERAP1, including three novel and eight known non-synonymous polymorphisms. We report several new associations between AS and polymorphisms distributed across ERAP1 from the extended case-control study, the most significant of which was with rs27434 (P = 4.7 × 10-7). Regression analysis failed to identify a primary association clearly; we therefore used data from HapMap to impute genotypes for an additional 205 non-coding SNPs located within and adjacent to ERAP1. A number of highly significant associations (P < 5 × 10-9) were identified in regulatory sequences which are good candidates for causing susceptibility to AS, possibly by regulating ERAP1 expression. © 2009 The Author(s).
Resumo:
Bone and joint diseases are major causes of morbidity and mortality worldwide, and their prevalence is increasing as the average population age increases. Most common musculoskeletal diseases show significant heritability, and few have treatments that prevent disease or can induce true treatment-free, disease-free remission. Furthermore, despite valiant efforts of hypothesis-driven research, our understanding of the etiopathogenesis of these conditions is, with few exceptions, at best moderate. Therefore, there has been a long-standing interest in genetics research in musculoskeletal disease as a hypothesis-free method for investigating disease etiopathogenesis. Important contributions have been made through the identification of monogenic causes of disease, but the holy grail of human genetics research has been the identification of the genes responsible for common diseases. The development of genome-wide association (GWA) studies has revolutionized this field, and led to an explosion in the number of genes identified that are definitely involved in musculoskeletal disease pathogenesis. However, this approach will not identify all common disease genes, and although the current progress is exciting and proves the potential of this research discipline, other approaches will be required to identify many of the types of genetic variation likely to be involved.