528 resultados para Gear method
Resumo:
Energy efficient lubricants are becoming increasingly popular. This is due to a global increase in environmental awareness combined with the potential of reducing operating costs. A new test method of evaluating the energy efficiency of gear oils has been described in this report. The method involves measuring the power required by an FZG test rig to run while using a particular test lubricant. For each oil that was being evaluated, the rig was run for 10 minutes at a load stage of 10. Six extreme pressure (EP) industrial gear oils of mineral base were tested. The difference in power requirements between the best and the worst performing oils was 2.77 and 3.24 kW, respectively. This equates to a 14.6% reduction in power, a significant amount if considered in relation to a high powered industrial machine. The oils of superior performance were noticed to run at reduced temperatures. They were also more expensive than the other products of lesser performance.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.