178 resultados para Gaussian processes for machine learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The commercialization of aerial image processing is highly dependent on the platforms such as UAVs (Unmanned Aerial Vehicles). However, the lack of an automated UAV forced landing site detection system has been identified as one of the main impediments to allow UAV flight over populated areas in civilian airspace. This article proposes a UAV forced landing site detection system that is based on machine learning approaches including the Gaussian Mixture Model and the Support Vector Machine. A range of learning parameters are analysed including the number of Guassian mixtures, support vector kernels including linear, radial basis function Kernel (RBF) and polynormial kernel (poly), and the order of RBF kernel and polynormial kernel. Moreover, a modified footprint operator is employed during feature extraction to better describe the geometric characteristics of the local area surrounding a pixel. The performance of the presented system is compared to a baseline UAV forced landing site detection system which uses edge features and an Artificial Neural Network (ANN) region type classifier. Experiments conducted on aerial image datasets captured over typical urban environments reveal improved landing site detection can be achieved with an SVM classifier with an RBF kernel using a combination of colour and texture features. Compared to the baseline system, the proposed system provides significant improvement in term of the chance to detect a safe landing area, and the performance is more stable than the baseline in the presence of changes to the UAV altitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising technology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of the approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labeling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means. The outcome of this approach is a soft K-means algorithm similar to the EM algorithm for Gaussian mixture models. The results show the algorithm delivers decision boundaries that consistently classify the field into three clusters, one for each crop health level. The methodology presented in this paper represents a venue for further research towards automated crop damage assessments and biosecurity surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diagnostic method based on Bayesian Networks (probabilistic graphical models) is presented. Unlike conventional diagnostic approaches, in this method instead of focusing on system residuals at one or a few operating points, diagnosis is done by analyzing system behavior patterns over a window of operation. It is shown how this approach can loosen the dependency of diagnostic methods on precise system modeling while maintaining the desired characteristics of fault detection and diagnosis (FDD) tools (fault isolation, robustness, adaptability, and scalability) at a satisfactory level. As an example, the method is applied to fault diagnosis in HVAC systems, an area with considerable modeling and sensor network constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary genetic risk factor in multiple sclerosis (MS) is the HLA-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has yet to be elucidated. Several lines of evidence support a role for neuroendocrine system involvement in autoimmunity which may, in part, be genetically determined. Here, we comprehensively investigated variation within eight candidate hypothalamic-pituitary-adrenal (HPA) axis genes and susceptibility to MS. A total of 326 SNPs were investigated in a discovery dataset of 1343 MS cases and 1379 healthy controls of European ancestry using a multi-analytical strategy. Random Forests, a supervised machine-learning algorithm, identified eight intronic SNPs within the corticotrophin-releasing hormone receptor 1 or CRHR1 locus on 17q21.31 as important predictors of MS. On the basis of univariate analyses, six CRHR1 variants were associated with decreased risk for disease following a conservative correction for multiple tests. Independent replication was observed for CRHR1 in a large meta-analysis comprising 2624 MS cases and 7220 healthy controls of European ancestry. Results from a combined meta-analysis of all 3967 MS cases and 8599 controls provide strong evidence for the involvement of CRHR1 in MS. The strongest association was observed for rs242936 (OR = 0.82, 95% CI = 0.74-0.90, P = 9.7 × 10-5). Replicated CRHR1 variants appear to exist on a single associated haplotype. Further investigation of mechanisms involved in HPA axis regulation and response to stress in MS pathogenesis is warranted. © The Author 2010. Published by Oxford University Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Cancer monitoring and prevention relies on the critical aspect of timely notification of cancer cases. However, the abstraction and classification of cancer from the free-text of pathology reports and other relevant documents, such as death certificates, exist as complex and time-consuming activities. Aims In this paper, approaches for the automatic detection of notifiable cancer cases as the cause of death from free-text death certificates supplied to Cancer Registries are investigated. Method A number of machine learning classifiers were studied. Features were extracted using natural language techniques and the Medtex toolkit. The numerous features encompassed stemmed words, bi-grams, and concepts from the SNOMED CT medical terminology. The baseline consisted of a keyword spotter using keywords extracted from the long description of ICD-10 cancer related codes. Results Death certificates with notifiable cancer listed as the cause of death can be effectively identified with the methods studied in this paper. A Support Vector Machine (SVM) classifier achieved best performance with an overall F-measure of 0.9866 when evaluated on a set of 5,000 free-text death certificates using the token stem feature set. The SNOMED CT concept plus token stem feature set reached the lowest variance (0.0032) and false negative rate (0.0297) while achieving an F-measure of 0.9864. The SVM classifier accounts for the first 18 of the top 40 evaluated runs, and entails the most robust classifier with a variance of 0.001141, half the variance of the other classifiers. Conclusion The selection of features significantly produced the most influences on the performance of the classifiers, although the type of classifier employed also affects performance. In contrast, the feature weighting schema created a negligible effect on performance. Specifically, it is found that stemmed tokens with or without SNOMED CT concepts create the most effective feature when combined with an SVM classifier.