370 resultados para GENETIC-HETEROGENEITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a frequent familial disorder that, in common with most multifactorial disorders, has an unknown etiology. The authors identified several families with multiple individuals affected by typical migraine using a single set of diagnostic criteria and studied these families for cosegregation between the disorder and markers on chromosome 19, the location of a mutation that causes a rare form of familial hemiplegic migraine (FHM). One large tested family showed both cosegregation and significant allele sharing for markers situated within or adjacent to the FHM locus. Multipoint GENEHUNTER results indicated significant excess allele sharing across a 12.6- cM region containing the FHM Ca2+ channel gene, CACNL1A4 (maximum nonparametric linkage Z score = 6.64, p = 0.0026), with a maximum parametric lod score of 1.92 obtained for a (CAG)(n) triplet repeat polymorphism situated in exon 47 of this gene. The CAG expansion did not, however, appear to be the cause of migraine in this pedigree. Other tested families showed neither cosegregation nor excess allele sharing to chromosome 19 markers. HOMOG analysis indicated heterogeneity, generating a maximum HLOD score of 3.6. It was concluded that Chr19 mutations either in the CACNL1A4 gene or a closely linked gene are implicated in some pedigrees with familial typical migraine, and that the disorder is genetically heterogeneous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The native Asian oyster, Crassostrea ariakensis is one of the most common and important Crassostrea species that occur naturally along the coast of East Asia. Molecular species diagnosis is a prerequisite for population genetic analysis of wild oyster populations because oyster species cannot be discriminated reliably using external morphological characters alone due to character ambiguity. To date there have been few phylogeographic studies of natural edible oyster populations in East Asia, in particular this is true of the common species in Korea C. ariakensis. We therefore assessed the levels and patterns of molecular genetic variation in East Asian wild populations of C. ariakensis from Korea, Japan, and China using DNA sequence analysis of five concatenated mtDNA regions namely; 16S rRNA, cytochrome oxidase I, cytochrome oxidase II, cytochrome oxidase III, and cytochrome b. Two divergent C. ariakensis clades were identified between southern China and remaining sites from the northern region. In addition, hierarchical AMOVA and pairwise UST analyses showed that genetic diversity was discontinuous among wild populations of C. ariakensis in East Asia. Biogeographical and historical sea level changes are discussed as potential factors that may have influenced the genetic heterogeneity of wild C. ariakensis stocks across this region.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Charcot-Marie-Tooth neuropathy type 1 (CMT1) is an autosomal dominant disorder originally localized to chromosome 1 by linkage to the Duffy blood group. Studies have since shown that the disorder may be heterogeneous, as not all families show this linkage. We tested genetic heterogeneity by the HOMOG computer program in 15 CMT1 pedigrees informative for Duffy. We detected no evidence for heterogeneity in this sample, but when we combined results with previously published lod scores, heterogeneity was statistically significant. Twelve of the 15 families studied did not show linkage to Duffy. We found six of these families to be informative for a chromosome 19 marker, apolipoprotein CII(ApoC2). Despite a previous report showing probable linkage of a non-Duffy-linked CMT1 pedigree to two chromosome 19 markers, we did not detect significant linkage of ApoC2 to CMT1 in these families.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives - It has long been suspected that susceptibility to ankylosing spondylitis (AS) is influenced by genes lying distant to the major histocompatibility complex. This study compares genetic models of AS to assess the most likely mode of inheritance, using recurrence risk ratios in relatives of affected subjects. Methods - Recurrence risk ratios in different degrees of relatives were determined using published data from studies specifically designed to address the question. The methods of Risch were used to determine the expected recurrence risk ratios in different degrees of relatives, assuming equal first degree relative recurrence risk between models. Goodness of fit was determined by χ2 comparison of the expected number of affected subjects with the observed number, given equal numbers of each type of relative studied. Results - The recurrence risks in different degrees of relatives were: monozygotic (MZ) twins 63% (17/27), first degree relatives 8.2% (441/5390), second degree relatives 1.0% (8/834), and third degree relatives 0.7% (7/997). Parent-child recurrence risk (7.9%, 37/466) was not significantly different from the sibling recurrence risk (8.2%, 404/4924), excluding a significant dominance genetic component to susceptibility. Poor fitting models included single gene, genetic heterogeneity, additive, two locus multiplicative, and one locus and residual polygenes (χ2 > 32 (two degrees of freedom), p < 10-6 for all models). The best fitting model studied was a five locus model with multiplicative interaction between loci (χ2 = 1.4 (two degrees of freedom), p = 0.5). Oligogenic multiplicative models were the best fitting over a range of population prevalences and first degree recurrence risk rates. Conclusions - This study suggests that of the genetic models tested, the most likely model operating in AS is an oligogenic model with predominantly multiplicative interaction between loci.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has been 10 years since the seminal paper by Morrison and colleagues reporting the association of alleles of the vitamin D receptor and bone density [1], a paper which arguably kick-started the study of osteoporosis genetics. Since that report there have been literally thousands of osteoporosis genetic studies published, and large numbers of genes have been reported to be associated with the condition [2]. Although some of these reported associations are undoubtedly true, this snow-storm of papers and abstracts has clouded the field to such a great extent that it is very difficult to be certain of the veracity of most genetic associations reported hereto. The field needs to take stock and reconsider the best way forward, taking into account the biology of skeletal development and technological and statistical advances in human genetics, before more effort and money is wasted on continuing a process in which the primary achievement could be said to be a massive paper mountain. I propose in this review that the primary reasons for the paucity of success in osteoporosis genetics has been: •the absence of a major gene effect on bone mineral density (BMD), the most commonly studied bone phenotype; •failure to consider issues such as genetic heterogeneity, gene–environment interaction, and gene–gene interaction; •small sample sizes and over-optimistic data interpretation; and •incomplete assessment of the genetic variation in candidate genes studied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 +/- 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 +/- 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 +/- 0.06 s.e.), and ADHD and major depressive disorder (0.32 +/- 0.07 s.e.), low between schizophrenia and ASD (0.16 +/- 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The detection and replication of schizophrenia risk loci can require substantial sample sizes, which has prompted various collaborative efforts for combining multiple samples. However, pooled samples may comprise sub-samples with substantial population genetic differences, including allele frequency differences. We investigated the impact of population differences via linkage reanalysis of Molecular Genetics of Schizophrenia 1 (MGS1) affected sibling-pair data, comprising two samples of distinct ancestral origin: European (EA: 263 pedigrees) and African-American (AA: 146 pedigrees). To exploit the linkage information contained within these distinct continental samples, we performed separate analyses of the individual samples, allowing for within-sample locus heterogeneity, and the pooled sample, allowing for both within-sample and between-sample heterogeneity. Significance levels, corrected for the multiple tests, were determined empirically. For all suggestive peaks, stronger linkage evidence was obtained in either the EA or AA sample than the combined sample, regardless of how heterogeneity was modeled for the latter. Notably, we report genomewide significant linkage of schizophrenia to 8p23.3 and evidence for a second, independent susceptibility locus, reaching suggestive linkage, 29 cM away on 8p21.3. We also detected suggestive linkage on chromosomes 5p13.3 and 7q36.2. Many regions showed pronounced differences in the extent of linkage between the EA and AA samples. This reanalysis highlights the potential impact of population differences upon linkage evidence in pooled data and demonstrates a useful approach for the analysis of samples drawn from distinct continental groups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The commonly used "end diagnosis" phenotype that is adopted in linkage and association studies of complex traits is likely to represent an oversimplified model of the genetic background of a disease. This is also likely to be the case for common types of migraine, for which no convincingly associated genetic variants have been reported. In headache disorders, most genetic studies have used end diagnoses of the International Headache Society (IHS) classification as phenotypes. Here, we introduce an alternative strategy; we use trait components--individual clinical symptoms of migraine--to determine affection status in genomewide linkage analyses of migraine-affected families. We identified linkage between several traits and markers on chromosome 4q24 (highest LOD score under locus heterogeneity [HLOD] 4.52), a locus we previously reported to be linked to the end diagnosis migraine with aura. The pulsation trait identified a novel locus on 17p13 (HLOD 4.65). Additionally, a trait combination phenotype (IHS full criteria) revealed a locus on 18q12 (HLOD 3.29), and the age at onset trait revealed a locus on 4q28 (HLOD 2.99). Furthermore, suggestive or nearly suggestive evidence of linkage to four additional loci was observed with the traits phonophobia (10q22) and aggravation by physical exercise (12q21, 15q14, and Xp21), and, interestingly, these loci have been linked to migraine in previous studies. Our findings suggest that the use of symptom components of migraine instead of the end diagnosis provides a useful tool in stratifying the sample for genetic studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Familial hemiplegic migraine is a severe, rare subtype of migraine. Gene mutations on chromosome 19 have been identified in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene (chromosome 19p13) for familial hemiplegic migraine. Recently a gene mutation (Serine-218-Leucine) for a dramatic syndrome associated with familial hemiplegic migraine, commonly named “migraine coma”, has implicated exon 5 of this gene. The occurrence of trivial head trauma, in such familial hemiplegic migraine patients, may also be complicated by severe, sometimes even fatal, cerebral edema and coma occurring after a lucid interval. Sporadic hemiplegic migraine shares a similar spectrum of clinical presentation and genetic heterogeneity. The case report presented in this article implicates the involvement of the Serine-218-Leucine mutation in the extremely rare disorder of minor head trauma–induced migraine coma. We conclude that the Serine-218-Leucine mutation in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene is involved in sporadic hemiplegic migraine, delayed cerebral edema and coma after minor head trauma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of Duffy (Fy) linkage confirm genetic heterogeneity in Charcot-Marie-Tooth disease type 1 (CMT1). Of 11 families informative for Fy, four showed probable linkage with CMT1, seven showed probable non-linkage and two showed definite non-linkage. These results suggest that Fy linked CMT1 may be less common than previously thought. These results combined with those of another DNA probe for the antithrombin III gene confirm that there are at least two gene loci for CMT1, termed 1A and 1B.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10 -11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28-1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The genetic mutation resulting in osteogenesis imperfecta (OI) type V was recently characterised as a single point mutation (c.-14C > T) in the 5' untranslated region (UTR) of IFITM5, a gene encoding a transmembrane protein with expression restricted to skeletal tissue. This mutation creates an alternative start codon and has been shown in a eukaryotic cell line to result in a longer variant of IFITM5, but its expression has not previously been demonstrated in bone from a patient with OI type V. Methods Sanger sequencing of the IFITM5 5' UTR was performed in our cohort of subjects with a clinical diagnosis of OI type V. Clinical data was collated from referring clinicians. RNA was extracted from a bone sample from one patient and Sanger sequenced to determine expression of wild-type and mutant IFITM5. Results: All nine subjects with OI type V were heterozygous for the c.-14C > T IFITM5 mutation. Clinically, there was heterogeneity in phenotype, particularly in the manifestation of bone fragility amongst subjects. Both wild-type and mutant IFITM5 mRNA transcripts were present in bone. Conclusions The c.-14C > T IFITM5 mutation does not result in an RNA-null allele but is expressed in bone. Individuals with identical mutations in IFITM5 have highly variable phenotypic expression, even within the same family.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of germline polymorphisms of the T-cell receptor A/D and B loci in susceptibility to ankylosing spondylitis was investigated by linkage studies using microsatellite markers in 215 affected sibling pairs. The presence of a significant susceptibility gene (lambda ≤ 1.6) at the TCRA/D locus was excluded (LOD score < -2.0). At the TCRB locus, there was weak evidence of the presence of a susceptibility gene (P = 0.01, LOD score 1.1). Further family studies will be required to determine whether this is a true or false-positive finding. It is unlikely that either the TCRA/D or TCRB loci contain genes responsible for more than a moderate proportion of the non-MHC genetic susceptibility to ankylosing spondylitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Genetic testing is recommended when the probability of a disease-associated germline mutation exceeds 10%. Germline mutations are found in approximately 25% of individuals with phaeochromcytoma (PCC) or paraganglioma (PGL); however, genetic heterogeneity for PCC/PGL means many genes may require sequencing. A phenotype-directed iterative approach may limit costs but may also delay diagnosis, and will not detect mutations in genes not previously associated with PCC/PGL. Objective To assess whether whole exome sequencing (WES) was efficient and sensitive for mutation detection in PCC/PGL. Methods Whole exome sequencing was performed on blinded samples from eleven individuals with PCC/PGL and known mutations. Illumina TruSeq™ (Illumina Inc, San Diego, CA, USA) was used for exome capture of seven samples, and NimbleGen SeqCap EZ v3.0 (Roche NimbleGen Inc, Basel, Switzerland) for five samples (one sample was repeated). Massive parallel sequencing was performed on multiplexed samples. Sequencing data were called using Genome Analysis Toolkit and annotated using annovar. Data were assessed for coding variants in RET, NF1, VHL, SDHD, SDHB, SDHC, SDHA, SDHAF2, KIF1B, TMEM127, EGLN1 and MAX. Target capture of five exome capture platforms was compared. Results Six of seven mutations were detected using Illumina TruSeq™ exome capture. All five mutations were detected using NimbleGen SeqCap EZ v3.0 platform, including the mutation missed using Illumina TruSeq™ capture. Target capture for exons in known PCC/PGL genes differs substantially between platforms. Exome sequencing was inexpensive (<$A800 per sample for reagents) and rapid (results <5 weeks from sample reception). Conclusion Whole exome sequencing is sensitive, rapid and efficient for detection of PCC/PGL germline mutations. However, capture platform selection is critical to maximize sensitivity.