924 resultados para Factory management.
Resumo:
MOST PAN stages in Australian factories use only five or six batch pans for the high grade massecuite production and operate these in a fairly rigid repeating production schedule. It is common that some of the pans are of large dropping capacity e.g. 150 to 240 t. Because of the relatively small number and large sizes of the pans, steam consumption varies widely through the schedule, often by ±30% about the mean value. Large fluctuations in steam consumption have implications for the steam generation/condensate management of the factory and the evaporators when bleed vapour is used. One of the objectives of a project to develop a supervisory control system for a pan stage is to (a) reduce the average steam consumption and (b) reduce the variation in the steam consumption. The operation of each of the high grade pans within the schedule at Macknade Mill was analysed to determine the idle (or buffer) time, time allocations for essential but unproductive operations (e.g. pan turn round, charging, slow ramping up of steam rates on pan start etc.), and productive time i.e. the time during boil-on of liquor and molasses feed. Empirical models were developed for each high grade pan on the stage to define the interdependence of the production rate and the evaporation rate for the different phases of each pan’s cycle. The data were analysed in a spreadsheet model to try to reduce and smooth the total steam consumption. This paper reports on the methodology developed in the model and the results of the investigations for the pan stage at Macknade Mill. It was found that the operation of the schedule severely restricted the ability to reduce the average steam consumption and smooth the steam flows. While longer cycle times provide increased flexibility the steam consumption profile was changed only slightly. The ability to cut massecuite on the run among pans, or the use of a high grade seed vessel, would assist in reducing the average steam consumption and the magnitude of the variations in steam flow.
Resumo:
Clarification performance and flocculant dosage is strongly linked to the mud solids loading in the feed entering the clarifier. The recycle of filtrate can represent an extra ~10-15% mud solids loading on the clarifier, thereby reducing its effective capacity. Filtrate recycling may cause significant increase in turbidity, complexed calcium ion formation, phosphate, proteins and polysaccharides in mixed juice that impact on evaporator scale formation and molasses exhaustion. The paper details the results obtained from laboratory, pilot scale and factory trials of filtrate clarification using both sedimentation and flotation methods. Clarified filtrate could be produced of similar quality to ESJ. Filtrate clarification was able to significantly remove insoluble solids, turbidity, phosphate, and polysaccharides content with slight reductions in minerals content of the filtrate. On the basis of improved filtrate quality, the clarified filtrate could be directed to ESJ, instead of the normal practice of directing the mud filtrate to mixed juice. The potential impacts of implementing filtrate clarification are discussed in respect to improved performance and throughput of the clarification station.
Inter-Organisational Approaches to Regional Growth Management: A Case Study in South East Queensland
Resumo:
Developments in information technology will drive the change in records management; however, it should be the health information managers who drive the information management change. The role of health information management will be challenged to use information technology to broker a range of requests for information from a variety of users, including he alth consumers. The purposes of this paper are to conceptualise the role of health information management in the context of a technologically driven and managed health care environment, and to demonstrat e how this framework has been used to review and develop the undergraduate program in health information management at the Queensland University of Technology.