96 resultados para Eva Perón
Resumo:
Kaolinite surfaces were modified by mechanochemical treatment for periods of time up to 10 h. X-ray diffraction shows a steady decrease in intensity of the d(001) spacing with mechanochemical treatment, resulting in the delamination of the kaolinite and a subsequent decrease in crystallite size with grinding time. Thermogravimetric analyses show the dehydroxylation patterns of kaolinite are significantly modified. Changes in the molecular structure of the kaolinite surface hydroxyls were followed by infrared spectroscopy. Hydroxyls were lost after 10 h of grinding as evidenced by a decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm−1 and the deformation modes at 937 and 915 cm−1. Concomitantly an increase in the hydroxyl stretching vibrations of water is found. The water-bending mode was observed at 1650 cm−1, indicating that water is coordinating to the modified kaolinite surface. Changes in the surface structure of the OSiO units were reflected in the SiO stretching and OSiO bending vibrations. The decrease in intensity of the 1056 and 1034 cm−1 bands attributed to kaolinite SiO stretching vibrations were concomitantly matched by the increase in intensity of additional bands at 1113 and 520 cm−1 ascribed to the new mechanically synthesized kaolinite surface. Mechanochemical treatment of the kaolinite results in a new surface structure.
Resumo:
The effect of mechanochemical activation upon the intercalation of formamide into a high-defect kaolinite has been studied using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. X-ray diffraction shows that the intensity of the d(001) spacing decreases with grinding time and that the intercalated high-defect kaolinite expands to 10.2 A. The intensity of the peak of the expanded phase of the formamide-intercalated kaolinite decreases with grinding time. Thermal analysis reveals that the evolution temperature of the adsorbed formamide and loss of the inserting molecule increases with increased grinding time. The temperature of the dehydroxylation of the formamide-intercalated high-defect kaolinite decreases from 495 to 470oC with mechanochemical activation. Changes in the surface structure of the mechanochemically activated formamide-intercalated high-defect kaolinite were followed by DRIFT spectroscopy. Fundamentally the intensity of the high-defect kaolinite hydroxyl stretching bands decreases exponentially with grinding time and simultaneously the intensity of the bands attributed to the OH stretching vibrations of water increased. It is proposed that the mechanochemical activation of the high-defect kaolinite caused the conversion of the hydroxyls to water which coordinates the kaolinite surface. Significant changes in the infrared bands assigned to the hydroxyl deformation and amide stretching and bending modes were observed. The intensity decrease of these bands was exponentially related to the grinding time. The position of the amide C&unknown;O vibrational mode was found to be sensitive to grinding time. The effect of mechanochemical activation of the high-defect kaolinite reduces the capacity of the kaolinite to be intercalated with formamide.
Resumo:
Bayesian Belief Networks (BBNs) are emerging as valuable tools for investigating complex ecological problems. In a BBN, the important variables in a problem are identified and causal relationships are represented graphically. Underpinning this is the probabilistic framework in which variables can take on a finite range of mutually exclusive states. Associated with each variable is a conditional probability table (CPT), showing the probability of a variable attaining each of its possible states conditioned on all possible combinations of it parents. Whilst the variables (nodes) are connected, the CPT attached to each node can be quantified independently. This allows each variable to be populated with the best data available, including expert opinion, simulation results or observed data. It also allows the information to be easily updated as better data become available ----- ----- This paper reports on the process of developing a BBN to better understand the initial rapid growth phase (initiation) of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay, Queensland. Anecdotal evidence suggests that Lyngbya blooms in this region have increased in severity and extent over the past decade. Lyngbya has been associated with acute dermatitis and a range of other health problems in humans. Blooms have been linked to ecosystem degradation and have also damaged commercial and recreational fisheries. However, the causes of blooms are as yet poorly understood.
Resumo:
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
Resumo:
This study presented the characteristics of the loading impact on the residuum of a transfemoral amputee fitted with an osseointegrated fixation during a fall for the first time. The maximum force (1,145 N = 132 % of the body weight and moments (153 N.m) were applied on the long and medio-lateral axes, respectively, approximately 0.85 s after heel contact of the prosthesis.
Resumo:
This practice-led research was initiated in response to a series of violent encounters that occurred between my fragile installations and viewers. The central focus of this study was to recuperate my installation practice in the wake of such events. This led to the development of a ‘responsive practice’ methodology, which reframed the installation process through an ethical lens developed from Emmanuel Levinas’ ethical phenomenology. The central propositions of this research are the reconceptualisation of ‘violent encounters’ in terms of difference whereby I accept viewers responses, even those which are violent, destructive or damaging, and secondly that the process operates as a generative excess for practice through which recuperative strategies can be found and implemented. By re-examining this process as it unfolded in the three phases of the practical component, I developed strategies whereby violated, destroyed or damaged works could be recuperated through the processes of reconfiguration, reparation and regeneration. Therefore my installations embody and articulate vulnerability but also demonstrate resilience and renewal.
Resumo:
There are various understandings of peace education. What might be called maximalist peace education refers to educating students towards personal fulfilment and the creation of a just and co-operative society. What might be called minimalist peace education refers to educating students to avoid war, militarism and arms races. Peace education is only now being formally accepted as an integral part of educational endeavour, and an important part of this acceptance is recognition in international pronouncements and instruments, emphasizing the importance of a culture of peace and the right to peace. In terms of methodology, peace education includes curriculum, structures and process, and personal leadership. This last element is clearly the most challenging of all.
Resumo:
This study directly measured the load acting on the abutment of the osseointegrated implant system of transfemoral amputees during level walking, and studied the variability of the load within and among amputees. Twelve active transfemoral amputees (age: 54±12 years, mass:84.3±16.3 kg, height: 17.8±0.10 m) fitted with an osseointegrated implant for over 1 year participated in the study. The load applied on the abutment was measured during unimpeded, level walking in a straight line using a commercial six-channel transducer mounted between the abutment and the prosthetic knee. The pattern and the magnitude of the three-dimensional forces and moments were revealed. Results showed a low step-to-step variability of each subject, but a high subject-to-subject variability in local extrema of body-weight normalized forces and moments and impulse data. The high subject-to-subject variability suggests that the mechanical design of the implant system should be customized for each individual, or that a fit-all design should take into consideration the highest values of load within a broad range of amputees. It also suggests specific loading regime in rehabilitation training are necessary for a given subject. Thus the loading magnitude and variability demonstrated should be useful in designing an osseointegrated implant system better able to resist mechanical failure and in refining the rehabilitation protocol.
Resumo:
The purpose of this study was to characterise the functional outcome of 12 transfemoral amputees fitted with osseointegrated fixation using temporal gait characteristics. The objectives were (A) to present the cadence, duration of gait cycle, support and swing phases with an emphasis on the stride-to-stride and participant-to-participant variability, and (B) to compare these temporal variables with normative data extracted from the literature focusing on transfemoral amputees fitted with a socket and able-bodied participants. The temporal variables were extracted from the load applied on the residuum during straight level walking, which was collected at 200 Hz by a transducer. A total of 613 strides were assessed. The cadence (46±4 strides/min), the duration of the gait cycle (1.29±0.11 s), support (0.73±0.07 s, 57±3% of CG) and swing (0.56±0.07 s, 43±3% of GC) phases of the participants were 2% quicker, 3%, 6% shorter and 1% longer than transfemoral amputees using a socket as well as 11% slower, 9%, 6% and 13% longer than able-bodied, respectively. All combined, the results indicated that the fitting of an osseointegrated fixation has enabled this group of amputees to restore their locomotion with a highly functional level. Further longitudinal and cross-sectional studies would be required to confirm these outcomes. Nonetheless, the data presented can be used as benchmark for future comparisons. It can also be used as input in generic algorithms using templates of patterns of loading to recognise activities of daily living and to detect falls.
Resumo:
The early years are an important period for learning, but the questions surrounding participatory learning amongst toddlers remain under-examined. This book presents the latest theoretical and research perspectives about how ECEC (Early Childhood Education and Care) contexts promote democracy and citizenship through participatory learning approaches. The contributors provide insight into national policies, provisions, and practices and advance our understandings of theory and research on toddlers’ experiences for democratic participation across a number of countries, including the UK, Australia, New Zealand, the United States, Canada, Sweden, and Norway.