417 resultados para Environmental stressor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper understands climate change as a transformative stressor that will prompt responses from institutional governance frameworks in Australian cities. A transformative stressor is characterised as a chronic large-scale phenomenon which triggers a process of institutional change whereby institutions seek to reorientate their activities to better manage the social, economic and environmental impacts created by the transformative dynamic. It is posited that institutional change will be required as Australian metropolitan institutional governance frameworks seek to manage climate change effects in urban environments. It is argued that improved operationalisation of adaptation is required as part of a comprehensive urban response to the transformative stresses climate change and its effects are predicted to create in Australian cities. The operationalisation of adaptation refers to adaptation becoming incorporated, codified and implemented as a central principle of metro-regional planning governance. This paper has three key purposes. First, it examines theoretical and conceptual understandings of the role of transformative stressors in compelling institutional change within urban settings. Second, it establishes a conceptual approach that understands climate change as a transformative stressor requiring institutional change within the metropolitan planning frameworks of Australia's cities. Third, it offers early results and conclusions from an empirical investigation into the current prospects for operationalisation of climate adaptation in planning programs within Southeast Queensland (SEQ) via changes to institutional governance. A significant emerging conclusion is that early climate stresses appear not to be leading to episodic institutional change in the metropolitan planning frameworks of SEQ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.