126 resultados para Electrochemical Oxidation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The creation of electrocatalysts based on noble metals has received a significant amount of research interest due to their extensive use as fuel cell catalysts and electrochemical sensors. There have been many attempts to improve the activity of these metals through creating nanostructures, as well as post-synthesis treatments based on chemical, electrochemical, sonochemical and thermal approaches. In many instances these methods result in a material with active surface states, which can be considered to be adatoms or clusters of atoms on the surface that have a low lattice co-ordination number making them more prone to electrochemical oxidation at a wide range of potentials that are significantly less positive than those of their bulk metal counterparts. This phenomenon has been termed pre-monolayer oxidation and has been reported to occur on a range of metallic surfaces. In this work we present findings on the presence of active sites on Pd that has been: evaporated as a thin film; electrodeposited as nanostructures; as well as commercially available Pd nanoparticles supported on carbon. Significantly, advantage is taken of the low oxidation potential of these active sites whereby bimetallic surfaces are created by the spontaneous deposition of Ag from AgNO3 to generate Pd/Ag surfaces. Interestingly this approach does not increase the surface area of the original metal but has significant implications for its further use as an electrode material. It results in the inhibition or promotion of electrocatalytic activity which is highly dependent on the reaction of interest. As a general approach the decoration of active catalytic materials with less active metals for a particular reaction also opens up the possibility of investigating the role of the initially present active sites on the surface and identifying the degree to which they are responsible for electrocatalytic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of highly anisotropic AuPt alloys has been achieved via a simple electrochemical approach without the need for organic surfactants to direct the growth process. The surface and bulk properties of these materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and electrochemically by cyclic voltammetry to confirm alloy formation. It was found that AuPt materials are highly active for both the model hydrogen evolution reaction and the fuel cell relevant formic acid oxidation reaction. In particular for the latter case the preferred dehydrogenation pathway was observed at AuPt compared to nanostructured Pt prepared under identical electrochemical conditions which demonstrated the less preferred dehydration pathway. The enhanced performance is attributed to both the ensemble effect which facilitates CO(ads) removal from the surface as well as the highly anisotropic nanostructure of AuPt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemistry of homoleptic substituted phthalocyaninato rare earth double-decker complexes M(TBPc)2 and M(OOPc)2 [M = Y, La...Lu except Pm; H2TBPc = 3(4),12(13),21(22),30(31)-tetra-tert-butylphthalocyanine, H2OOPc = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] has been comparatively studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). Two quasi-reversible one-electron oxidations and three or four quasi-reversible one-electron reductions have been revealed for these neutral double-deckers of two series of substituted complexes, respectively. For comparison, unsubstituted bis(phthalocyaninato) rare earth analogues M(Pc)2 (M = Y, La...Lu except Pm; H2Pc = phthalocyanine) have also been electrochemically investigated. Two quasi-reversible one-electron oxidations and up to five quasi-reversible one-electron reductions have been revealed for these neutral double-decker compounds. The three bis(phthalocyaninato)cerium compounds display one cerium-centered redox wave between the first ligand-based oxidation and reduction. The half-wave potentials of the first and second oxidations and first reduction for double-deckers of the tervalent rare earths depend on the size of the metal center. The difference between the redox potentials of the second and third reductions for MIII(Pc)2, which represents the potential difference between the first oxidation and first reduction of [MIII(Pc)2]−, lies in the range 1.08−1.37 V and also gradually diminishes along with the lanthanide contraction, indicating enhanced π−π interactions in the double-deckers connected by the smaller, lanthanides. This corresponds well with the red-shift of the lowest energy band observed in the electronic absorption spectra of reduced double-decker [MIII(Pc′)2]− (Pc′ = Pc, TBPc, OOPc).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The galvanic replacement reaction has received considerable interest due to the creation of novel bimetallic nanomaterials that minimise the use of expensive metals while maintaining enhanced electrocatalytic properties for certain reactions. In this work we investigate the galvanic replacement of electrochemically synthesised iron nanocubes on glassy carbon, with gold and palladium. The resultant nanomaterials demonstrate quite a difference in morphology; the original cuboid like template is maintained in the case of gold but destroyed when palladium is used. The electrochemical and electrocatalytic behaviours of these materials are reported for reactions such as methanol oxidation, hydrogen evolution and oxygen reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a simple approach to the creation of highly dispersed electrocatalytically active silver microstructured dendrites on indium tin oxide in the absence of any surface modification or surfactant is presented. It is found that the addition of low concentrations of supporting electrolyte to the AgNO3 solution dramatically influences the morphology of electrodeposited silver which is independent of both the anion and the cation employed. The silver dendrites are characterized by SEM, XRD, XPS as well as by cyclic voltammetry under alkaline conditions. It is found that the surface oxide formation and removal processes are significantly influenced by the microstructured morphology of the silver electrodeposits compared to a smooth macrosized silver electrode. The facile formation of dendritic silver microstructures is also shown to be beneficial for the electrocatalytic oxidation of both formaldehyde and hydrazine and oxygen reduction. The formation of a continuous film of dendritic silver is also investigated for its SERS activity where the connectivity between the individual dendrites is found to be particularly important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of 7,7,8,8-tetracyanoquinodimethane (TCNQ) crystals attached to a glassy carbon electrode in the presence of Cu2+(aq) to form CuTCNQ(s) has been investigated using scanning electrochemical microscopy in the substrate generation tip collection mode and shown to involve a generation of soluble TCNQ−(aq). The subsequent oxidation of CuTCNQ does not involve simple expulsion of Cu+ into solution but a soluble complex attributed to Cu2+TCNQ−(aq). Mechanistic insights relative to the electrochemical conversion of CuTCNQ phase I into phase II by repetitive cycling of potential and electrochemical formation of KTCNQ have also been established

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the electrochemical behaviour of commercially available gold spheres and rods stabilised by carboxylic acid and cetyl trimethyl ammonium bromide (CTAB) moieties, respectively, are investigated. The cyclic voltammetric behaviour in acidic electrolyte is distinctly different with the nanorods exhibiting unusual oxidative behaviour due to an electrodissolution process. The nanospheres exhibited responses typical of a highly defective surface which significantly impacted on electrocatalytic activity. A repetitive potential cycling cleaning procedure was also investigated which did not improve the activity of the nanorods and resulted in deactivating the gold spheres due to decreasing the level of surface defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the fabrication of thin films of porphyrin and metallophthalocyanine derivatives on different substrates for the optochemical detection of HCl gas and electrochemical determination of L-cysteine (CySH). Solid state gas sensor for HCl gas was fabricated by coating meso-substituted porphyrin derivatives on glass slide and examined optochemical sensing of HCl gas. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band. Among the different porphyrin derivatives, meso- tetramesitylporphyrin (MTMP) coated film showed excellent sensitivity towards HCl and achieved a detection limit of 0.03ppm HCl. Further, we have studied the self-assembly of 1,8,15,22-tetraaminometallophthalocyanine (4α-MTAPc; M = Co and Ni) from DMF on GC electrode. The CVs for the self-assembled monolayers (SAMs) of 4α-CoIITAPc and 4α-NiIITAPc show two pairs of well-defined redox couple corresponding to metal and ring. Using the 4α-CoIITAPc SAM modified electrode, sensitive and selective detection of L-cysteine was demonstrated. Further, the SAM modified electrode also successfully separates the oxidation potentials of AA and CySH with a peak separation of 320mV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glassy carbon (GC) electrode modified with a self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α-CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α-CoIITAPc. The SAM showed two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10−9 to 30×10−9 M with a detection limit of 1.4×10−10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was prepared on indium tin oxide (ITO) electrode by spontaneous adsorption from dimethylformamide (DMF) solution containing 4α-CoIITAPc. The SAM of 4α-CoIITAPc formed on ITO electrode was characterized by cyclic voltammetry, Raman and UV–visible spectroscopic techniques. The cyclic voltammogram (CV) of 4α-CoIITAPc SAM shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) was calculated by integrating the charge under the anodic wave corresponding to CoII oxidation and it was found to be 2.25 × 10−10 mol cm−2. Raman spectrum obtained for the SAM of 4α-CoIITAPc on ITO surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Further, the –NH2 bending mode of vibration was absent for the SAM of 4α-CoIITAPc on ITO surface which indirectly confirmed that all the amino groups of 4α-CoIITAPc are involved in bonding with ITO surface. UV–visible spectrum for the SAM of 4α-CoIITAPc on ITO surface shows an intense B-band, Q-band and n–π∗ transition with slight broadening when compared to that of 4α-CoIITAPc in DMF.