676 resultados para Eigenvalues and Eigenfunctions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract—In this paper we investigate the capacity of a general class of the slotted amplify and forward (SAF) relaying protocol where multiple, though a finite number of relays may transmit in a given cooperative slot and the relay terminals being half-duplex have a finite slot memory capacity. We derive an expression for the capacity per channel use of this generalized SAF channel assuming all source to relay, relay to destination and source to destination channel gains are independent and modeled as complex Gaussian. We show through the analysis of eigenvalue distributions that the increase in limiting capacity per channel use is marginal with the increase of relay terminals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Load modelling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is parametric sensitivity analysis. A composite load model-based load sensitivity analysis framework is proposed. It enables comprehensive investigation into load modelling impacts on system stability considering the dynamic interactions between load and system dynamics. The effect of the location of individual as well as patches of composite loads in the vicinity on the sensitivity of the oscillatory modes is investigated. The impact of load composition on the overall sensitivity of the load is also investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The three-component reaction-diffusion system introduced in [C. P. Schenk et al., Phys. Rev. Lett., 78 (1997), pp. 3781–3784] has become a paradigm model in pattern formation. It exhibits a rich variety of dynamics of fronts, pulses, and spots. The front and pulse interactions range in type from weak, in which the localized structures interact only through their exponentially small tails, to strong interactions, in which they annihilate or collide and in which all components are far from equilibrium in the domains between the localized structures. Intermediate to these two extremes sits the semistrong interaction regime, in which the activator component of the front is near equilibrium in the intervals between adjacent fronts but both inhibitor components are far from equilibrium there, and hence their concentration profiles drive the front evolution. In this paper, we focus on dynamically evolving N-front solutions in the semistrong regime. The primary result is use of a renormalization group method to rigorously derive the system of N coupled ODEs that governs the positions of the fronts. The operators associated with the linearization about the N-front solutions have N small eigenvalues, and the N-front solutions may be decomposed into a component in the space spanned by the associated eigenfunctions and a component projected onto the complement of this space. This decomposition is carried out iteratively at a sequence of times. The former projections yield the ODEs for the front positions, while the latter projections are associated with remainders that we show stay small in a suitable norm during each iteration of the renormalization group method. Our results also help extend the application of the renormalization group method from the weak interaction regime for which it was initially developed to the semistrong interaction regime. The second set of results that we present is a detailed analysis of this system of ODEs, providing a classification of the possible front interactions in the cases of $N=1,2,3,4$, as well as how front solutions interact with the stationary pulse solutions studied earlier in [A. Doelman, P. van Heijster, and T. J. Kaper, J. Dynam. Differential Equations, 21 (2009), pp. 73–115; P. van Heijster, A. Doelman, and T. J. Kaper, Phys. D, 237 (2008), pp. 3335–3368]. Moreover, we present some results on the general case of N-front interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 monozygotic (MZ) twins and 25 dizygotic (DZ) twin pairs (100 subjects total). First, the structural and DT scans were linearly co-registered. Structural MR scans were nonlinearly mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was measured between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quanititative genetic studies can take advantage of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The aim of this research project was to obtain an understanding of the barriers to and facilitators of providing palliative care in neonatal nursing. This article reports the first phase of this research: to develop and administer an instrument to measure the attitudes of neonatal nurses to palliative care. METHODS The instrument developed for this research (the Neonatal Palliative Care Attitude Scale) underwent face and content validity testing with an expert panel and was pilot tested to establish temporal stability. It was then administered to a population sample of 1285 neonatal nurses in Australian NICUs, with a response rate of 50% (N 645). Exploratory factor-analysis techniques were conducted to identify scales and subscales of the instrument. RESULTS Data-reduction techniques using principal components analysis were used. Using the criteria of eigenvalues being 1, the items in the Neonatal Palliative Care Attitude Scale extracted 6 factors, which accounted for 48.1% of the variance among the items. By further examining the questions within each factor and the Cronbach’s of items loading on each factor, factors were accepted or rejected. This resulted in acceptance of 3 factors indicating the barriers to and facilitators of palliative care practice. The constructs represented by these factors indicated barriers to and facilitators of palliative care practice relating to (1) the organization in which the nurse practices, (2) the available resources to support a palliative model of care, and (3) the technological imperatives and parental demands. CONCLUSIONS The subscales identified by this analysis identified items that measured both barriers to and facilitators of palliative care practice in neonatal nursing. While establishing preliminary reliability of the instrument by using exploratory factor-analysis techniques, further testing of this instrument with different samples of neonatal nurses is necessary using a confirmatory factor-analysis approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Evidence-based practice (EBP) is embraced internationally as an ideal approach to improve patient outcomes and provide cost-effective care. However, despite the support for and apparent benefits of evidence-based practice, it has been shown to be complex and difficult to incorporate into the clinical setting. Research exploring implementation of evidence-based practice has highlighted many internal and external barriers including clinicians’ lack of knowledge and confidence to integrate EBP into their day-to-day work. Nurses in particular often feel ill-equipped with little confidence to find, appraise and implement evidence. Aims: The following study aimed to undertake preliminary testing of the psychometric properties of tools that measure nurses’ self-efficacy and outcome expectancy in regard to evidence-based practice. Methods: A survey design was utilised in which nurses who had either completed an EBP unit or were randomly selected from a major tertiary referral hospital in Brisbane, Australia were sent two newly developed tools: 1) Self-efficacy in Evidence-Based Practice (SE-EBP) scale and 2) Outcome Expectancy for Evidence-Based Practice (OE-EBP) scale. Results: Principal Axis Factoring found three factors with eigenvalues above one for the SE-EBP explaining 73% of the variance and one factor for the OE-EBP scale explaining 82% of the variance. Cronbach’s alpha for SE-EBP, three SE-EBP factors and OE-EBP were all >.91 suggesting some item redundancy. The SE-EBP was able to distinguish between those with no prior exposure to EBP and those who completed an introductory EBP unit. Conclusions: While further investigation of the validity of these tools is needed, preliminary testing indicates that the SE-EBP and OE-EBP scales are valid and reliable instruments for measuring health professionals’ confidence in the process and the outcomes of basing their practice on evidence.