259 resultados para Direct search
Resumo:
Strategic searching for invasive pests presents a formidable challenge for conservation managers. Limited funding can necessitate choosing between surveying many sites cursorily, or focussing intensively on fewer sites. While existing knowledge may help to target more likely sites, e.g. with species distribution models (maps), this knowledge is not flawless and improving it also requires management investment. 2.In a rare example of trading-off action against knowledge gain, we combine search coverage and accuracy, and its future improvement, within a single optimisation framework. More specifically we examine under which circumstances managers should adopt one of two search-and-control strategies (cursory or focussed), and when they should divert funding to improving knowledge, making better predictive maps that benefit future searches. 3.We use a family of Receiver Operating Characteristic curves to reflect the quality of maps that direct search efforts. We demonstrate our framework by linking these to a logistic model of invasive spread such as that for the red imported fire ant Solenopsis invicta in south-east Queensland, Australia. 4.Cursory widespread searching is only optimal if the pest is already widespread or knowledge is poor, otherwise focussed searching exploiting the map is preferable. For longer management timeframes, eradication is more likely if funds are initially devoted to improving knowledge, even if this results in a short-term explosion of the pest population. 5.Synthesis and applications. By combining trade-offs between knowledge acquisition and utilization, managers can better focus - and justify - their spending to achieve optimal results in invasive control efforts. This framework can improve the efficiency of any ecological management that relies on predicting occurrence. © 2010 The Authors. Journal of Applied Ecology © 2010 British Ecological Society.
Resumo:
Damage localization induced by strain softening can be predicted by the direct minimization of a global energy function. This article concerns the computational strategy for implementing this principle for softening materials such as concrete. Instead of using heuristic global optimization techniques, our strategies are a hybrid of local optimization methods with a path-finding approach to ensure a global optimum. With admissible nodal displacements being independent variables, it is easy to deal with the geometric (mesh) constraint conditions. The direct search optimization methods recover the localized solutions for a range of softening lattice models which are representative of quasi-brittle structures
Resumo:
In this paper, load profile and operational goal are used to find optimal sizing of combined PV-energy storage for a future grid-connected residential building. As part of this approach, five operational goals are introduced and the annual cost for each operation goal has been assessed. Finally, the optimal sizing for combined PV-energy storage has been determined, using direct search method. In addition, sensitivity of the annual cost to different parameters has been analyzed.
Resumo:
This paper presents an efficient algorithm for optimizing the operation of battery storage in a low voltage distribution network with a high penetration of PV generation. A predictive control solution is presented that uses wavelet neural networks to predict the load and PV generation at hourly intervals for twelve hours into the future. The load and generation forecast, and the previous twelve hours of load and generation history, is used to assemble load profile. A diurnal charging profile can be compactly represented by a vector of Fourier coefficients allowing a direct search optimization algorithm to be applied. The optimal profile is updated hourly allowing the state of charge profile to respond to changing forecasts in load.
Resumo:
E. coli does chemotaxis by performing a biased random walk composed of alternating periods of swimming (runs) and reorientations (tumbles). Tumbles are typically modelled as complete directional randomisations but it is known that in wild type E. coli, successive run directions are actually weakly correlated, with a mean directional difference of ∼63°. We recently presented a model of the evolution of chemotactic swimming strategies in bacteria which is able to quantitatively reproduce the emergence of this correlation. The agreement between model and experiments suggests that directional persistence may serve some function, a hypothesis supported by the results of an earlier model. Here we investigate the effect of persistence on chemotactic efficiency, using a spatial Monte Carlo model of bacterial swimming in a gradient, combined with simulations of natural selection based on chemotactic efficiency. A direct search of the parameter space reveals two attractant gradient regimes, (a) a low-gradient regime, in which efficiency is unaffected by directional persistence and (b) a high-gradient regime, in which persistence can improve chemotactic efficiency. The value of the persistence parameter that maximises this effect corresponds very closely with the value observed experimentally. This result is matched by independent simulations of the evolution of directional memory in a population of model bacteria, which also predict the emergence of persistence in high-gradient conditions. The relationship between optimality and persistence in different environments may reflect a universal property of random-walk foraging algorithms, which must strike a compromise between two competing aims: exploration and exploitation. We also present a new graphical way to generally illustrate the evolution of a particular trait in a population, in terms of variations in an evolvable parameter.