324 resultados para Diffusion Equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order $0<\alpha<1$ ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent with $O(\tau+h^2)$, where $\tau$ and $h$ are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomalous dynamics in complex systems have gained much interest in recent years. In this paper, a two-dimensional anomalous subdiffusion equation (2D-ASDE) is considered. Two numerical methods for solving the 2D-ASDE are presented. Their stability, convergence and solvability are discussed. A new multivariate extrapolation is introduced to improve the accuracy. Finally, numerical examples are given to demonstrate the effectiveness of the schemes and confirm the theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by a Caputo fractional derivative, and the second order space derivative by a symmetric fractional derivative. First, a method of separating variables expresses the analytical solution of the TSS-FDE in terms of the Mittag--Leffler function. Second, we propose two numerical methods to approximate the Caputo time fractional derivative: the finite difference method; and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative and the second order space derivative by the symmetric fractional derivative. Firstly, a method of separating variables is used to express the analytical solution of the tss-fde in terms of the Mittag–Leffler function. Secondly, we propose two numerical methods to approximate the Caputo time fractional derivative, namely, the finite difference method and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results are presented to demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.