128 resultados para Dengue fever
Resumo:
Background It remains unclear over whether it is possible to develop an epidemic forecasting model for transmission of dengue fever in Queensland, Australia. Objectives To examine the potential impact of El Niño/Southern Oscillation on the transmission of dengue fever in Queensland, Australia and explore the possibility of developing a forecast model of dengue fever. Methods Data on the Southern Oscillation Index (SOI), an indicator of El Niño/Southern Oscillation activity, were obtained from the Australian Bureau of Meteorology. Numbers of dengue fever cases notified and the numbers of postcode areas with dengue fever cases between January 1993 and December 2005 were obtained from the Queensland Health and relevant population data were obtained from the Australia Bureau of Statistics. A multivariate Seasonal Auto-regressive Integrated Moving Average model was developed and validated by dividing the data file into two datasets: the data from January 1993 to December 2003 were used to construct a model and those from January 2004 to December 2005 were used to validate it. Results A decrease in the average SOI (ie, warmer conditions) during the preceding 3–12 months was significantly associated with an increase in the monthly numbers of postcode areas with dengue fever cases (β=−0.038; p = 0.019). Predicted values from the Seasonal Auto-regressive Integrated Moving Average model were consistent with the observed values in the validation dataset (root-mean-square percentage error: 1.93%). Conclusions Climate variability is directly and/or indirectly associated with dengue transmission and the development of an SOI-based epidemic forecasting system is possible for dengue fever in Queensland, Australia.
Resumo:
This study aimed to investigate the spatial clustering and dynamic dispersion of dengue incidence in Queensland, Australia. We used Moran’s I statistic to assess the spatial autocorrelation of reported dengue cases. Spatial empirical Bayes smoothing estimates were used to display the spatial distribution of dengue in postal areas throughout Queensland. Local indicators of spatial association (LISA) maps and logistic regression models were used to identify spatial clusters and examine the spatio-temporal patterns of the spread of dengue. The results indicate that the spatial distribution of dengue was clustered during each of the three periods of 1993–1996, 1997–2000 and 2001–2004. The high-incidence clusters of dengue were primarily concentrated in the north of Queensland and low-incidence clusters occurred in the south-east of Queensland. The study concludes that the geographical range of notified dengue cases has significantly expanded in Queensland over recent years.
Resumo:
Dengue fever is one of the world’s most important vector-borne diseases. The transmission area of this disease continues to expand due to many factors including urban sprawl, increased travel and global warming. Current preventative techniques are primarily based on controlling mosquito vectors as other prophylactic measures, such as a tetravalent vaccine are unlikely to be available in the foreseeable future. However, the continually increasing dengue incidence suggests that this strategy alone is not sufficient. Epidemiological models attempt to predict future outbreaks using information on the risk factors of the disease. Through a systematic literature review, this paper aims at analyzing the different modeling methods and their outputs in terms of accurately predicting disease outbreaks. We found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the modeling process. Yet with advances in technology, the ability to incorporate such information as well as the socio-environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale.
Resumo:
Introduction: Dengue poses a problem for safe transfusion of blood components with confirmed reports of transfusion-transmission in Hong Kong and Singapore. The largest outbreak in 50 years occurred in North Queensland during 2008/2009 with more than 1,000 confirmed cases in Cairns and Townsville. During this outbreak, supplementary questioning for all donors was implemented, and fresh components were not manufactured from at risk donors. We aim to determine the seroprevalence of dengue exposure in this population during this epidemic. Methods: Samples were collected from blood donors during the 2008/2009 epidemic and 3 months after the last confirmed case. These samples were tested for anti-Dengue IgM, IgG and NS1 antigen with commercially available ELISA based assay kits from PanBio. Results: Initial analyses revealed 2.7% of samples from deferred donors were IgM repeat reactive. Of these, 16% were also positive for anti-dengue IgG, while none of these were positive for the NS1 viral antigen. However, two NS1 positives were found in samples collected from deferred donors. Conclusions: This initial analysis represents recent and cumulative past exposure in a presumed asymptomatic population, and will provide documentation of the rate of asymptomatic dengue infection during the epidemic. This data can also be used to assess the risk of dengue becoming endemic in North Queensland given that the mosquito vector is established in this region.
Resumo:
Objective: To examine the space-time clustering of dengue fever (DF) transmission in Bangladesh using geographical information system and spatial scan statistics (SaTScan). Methods: We obtained data on monthly suspected DF cases and deaths by district in Bangladesh for the period of 2000–2009 from Directorate General of Health Services. Population and district boundary data of each district were collected from national census managed by Bangladesh Bureau of Statistics. To identify the space-time clusters of DF transmission a discrete Poisson model was performed using SaTScan software. Results: Space-time distribution of DF transmission was clustered during three periods 2000–2002, 2003–2005 and 2006–2009. Dhaka was the most likely cluster for DF in all three periods. Several other districts were significant secondary clusters. However, the geographical range of DF transmission appears to have declined in Bangladesh over the last decade. Conclusion: There were significant space-time clusters of DF in Bangladesh over the last decade. Our results would prompt future studies to explore how social and ecological factors may affect DF transmission and would also be useful for improving DF control and prevention programs in Bangladesh.
Resumo:
INTRODUCTION Dengue fever (DF) in Vietnam remains a serious emerging arboviral disease, which generates significant concerns among international health authorities. Incidence rates of DF have increased significantly during the last few years in many provinces and cities, especially Hanoi. The purpose of this study was to detect DF hot spots and identify the disease dynamics dispersion of DF over the period between 2004 and 2009 in Hanoi, Vietnam. METHODS Daily data on DF cases and population data for each postcode area of Hanoi between January 1998 and December 2009 were obtained from the Hanoi Center for Preventive Health and the General Statistic Office of Vietnam. Moran's I statistic was used to assess the spatial autocorrelation of reported DF. Spatial scan statistics and logistic regression were used to identify space-time clusters and dispersion of DF. RESULTS The study revealed a clear trend of geographic expansion of DF transmission in Hanoi through the study periods (OR 1.17, 95% CI 1.02-1.34). The spatial scan statistics showed that 6/14 (42.9%) districts in Hanoi had significant cluster patterns, which lasted 29 days and were limited to a radius of 1,000 m. The study also demonstrated that most DF cases occurred between June and November, during which the rainfall and temperatures are highest. CONCLUSIONS There is evidence for the existence of statistically significant clusters of DF in Hanoi, and that the geographical distribution of DF has expanded over recent years. This finding provides a foundation for further investigation into the social and environmental factors responsible for changing disease patterns, and provides data to inform program planning for DF control.
Risk factors associated with an outbreak of dengue fever/dengue haemorrhagic fever in Hanoi, Vietnam
Resumo:
Dengue fever/dengue haemorrhagic fever (DF/DHF) appears to be emerging in Hanoi in recent years. A case-control study was performed to investigate risk factors for the development of DF/DHF in Hanoi. A total of 73 patients with DF/DHF and 73 control patients were included in the study. The risk factor analysis indicated that living in rented housing, living near uncovered sewers, and living in a house discharging sewage directly into to ponds were all significantly associated with DF/DHF. People living in rented houses were 2·2 times more at risk of DF/DHF than those living in their own homes [adjusted odds ratio (aOR) 2·2, 95% confidence interval (CI) 1·1–4·6]. People living in an unhygienic house, or in a house discharging sewage directly to the ponds were 3·4 times and 4·3 times, respectively, more likely to be associated with DF/DHF (aOR 3·4, 95% CI 1–11·7; aOR 4·3, 95% CI 1·1–16·9). These results contribute to the understanding of the dynamics of dengue transmission in Hanoi, which is needed to implement dengue prevention and control programmes effectively and efficiently.
Resumo:
Background Dengue fever has been a major public health concern in China since it re-emerged in Guangdong province in 1978. This study aimed to explore spatiotemporal characteristics of dengue fever cases for both indigenous and imported cases during recent years in Guangdong province, so as to identify high-risk areas of the province and thereby help plan resource allocation for dengue interventions. Methods Notifiable cases of dengue fever were collected from all 123 counties of Guangdong province from 2005 to 2010. Descriptive temporal and spatial analysis were conducted, including plotting of seasonal distribution of cases, and creating choropleth maps of cumulative incidence by county. The space-time scan statistic was used to determine space-time clusters of dengue fever cases at the county level, and a geographical information system was used to visualize the location of the clusters. Analysis were stratified by imported and indigenous origin. Results 1658 dengue fever cases were recorded in Guangdong province during the study period, including 94 imported cases and 1564 indigenous cases. Both imported and indigenous cases occurred more frequently in autumn. The areas affected by the indigenous and imported cases presented a geographically expanding trend over the study period. The results showed that the most likely cluster of imported cases (relative risk = 7.52, p < 0.001) and indigenous cases (relative risk = 153.56, p < 0.001) occurred in the Pearl River Delta Area; while a secondary cluster of indigenous cases occurred in one district of the Chao Shan Area (relative risk = 471.25, p < 0.001). Conclusions This study demonstrated that the geographic range of imported and indigenous dengue fever cases has expanded over recent years, and cases were significantly clustered in two heavily urbanised areas of Guangdong province. This provides the foundation for further investigation of risk factors and interventions in these high-risk areas.
Resumo:
Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.
Resumo:
Dengue fever (DF) is a serious public health concern in many parts of the world. An increase in DF incidence has been observed globally over the past decades. Multiple factors including urbanisation, increased international travels and global climate change are thought to be responsible for increased DF. However, little research has been conducted in the Asia-Pacific region about the impact of these changes on dengue transmission. The overarching aim of this thesis is to explore the spatiotemporal pattern of DF transmission in the Asia-Pacific region and project the future risk of DF attributable to climate change. Annual data of DF outbreaks for sixteen countries in the Asia-Pacific region over the last fifty years were used in this study. The results show that the geographic range of DF in this region increased significantly over the study period. Thailand, Vietnam and Laos were identified as the highest risk areas and there was a southward expansion observed in the transmission pattern of DF which might have originated from Philippines or Thailand. Additionally, the detailed DF data were obtained and the space-time clustering of DF transmission was examined in Bangladesh. Monthly DF data were used for the entire country at the district level during 2000-2009. Dhaka district was identified as the most likely DF cluster in Bangladesh and several districts of the southern part of Bangladesh were identified as secondary clusters in the years 2000-2002. In order to examine the association between meteorological factors and DF transmission and to project the future risk of DF using different climate change scenarios, the climate-DF relationship was examined in Dhaka, Bangladesh. The results show that climate variability (particularly maximum temperature and relative humidity) was positively associated with DF transmission in Dhaka. The effects of climate variability were observed at a lag of four months which might help to potentially control and prevent DF outbreaks through effective vector management and community education. Based on the quantitative assessment of the climate-DF relationship, projected climate change will likely increase mosquito abundance and activity and DF in this area. Assuming a temperature increase of 3.3oC without any adaptation measures and significant changes in socio-economic conditions, the consequence will be devastating, with a projected annual increase of 16,030 cases in Dhaka, Bangladesh by the end of this century. Therefore, public health authorities need to be prepared for likely increase of DF transmission in this region. This study adds to the literature on the recent trends of DF and impacts of climate change on DF transmission. These findings may have significant public health implications for the control and prevention of DF, particularly in the Asia- Pacific region.
Resumo:
Dengue virus (DENV) transmission in Australia is driven by weather factors and imported dengue fever (DF) cases. However, uncertainty remains regarding the threshold effects of high-order interactions among weather factors and imported DF cases and the impact of these factors on autochthonous DF. A time-series regression tree model was used to assess the threshold effects of natural temporal variations of weekly weather factors and weekly imported DF cases in relation to incidence of weekly autochthonous DF from 1 January 2000 to 31 December 2009 in Townsville and Cairns, Australia. In Cairns, mean weekly autochthonous DF incidence increased 16.3-fold when the 3-week lagged moving average maximum temperature was <32 °C, the 4-week lagged moving average minimum temperature was ≥24 °C and the sum of imported DF cases in the previous 2 weeks was >0. When the 3-week lagged moving average maximum temperature was ≥32 °C and the other two conditions mentioned above remained the same, mean weekly autochthonous DF incidence only increased 4.6-fold. In Townsville, the mean weekly incidence of autochthonous DF increased 10-fold when 3-week lagged moving average rainfall was ≥27 mm, but it only increased 1.8-fold when rainfall was <27 mm during January to June. Thus, we found different responses of autochthonous DF incidence to weather factors and imported DF cases in Townsville and Cairns. Imported DF cases may also trigger and enhance local outbreaks under favorable climate conditions.
Resumo:
BACKGROUND Dengue fever (DF) outbreaks often arise from imported DF cases in Cairns, Australia. Few studies have incorporated imported DF cases in the estimation of the relationship between weather variability and incidence of autochthonous DF. The study aimed to examine the impact of weather variability on autochthonous DF infection after accounting for imported DF cases and then to explore the possibility of developing an empirical forecast system. METHODOLOGY/PRINCIPAL FINDS Data on weather variables, notified DF cases (including those acquired locally and overseas), and population size in Cairns were supplied by the Australian Bureau of Meteorology, Queensland Health, and Australian Bureau of Statistics. A time-series negative-binomial hurdle model was used to assess the effects of imported DF cases and weather variability on autochthonous DF incidence. Our results showed that monthly autochthonous DF incidences were significantly associated with monthly imported DF cases (Relative Risk (RR):1.52; 95% confidence interval (CI): 1.01-2.28), monthly minimum temperature ((o)C) (RR: 2.28; 95% CI: 1.77-2.93), monthly relative humidity (%) (RR: 1.21; 95% CI: 1.06-1.37), monthly rainfall (mm) (RR: 0.50; 95% CI: 0.31-0.81) and monthly standard deviation of daily relative humidity (%) (RR: 1.27; 95% CI: 1.08-1.50). In the zero hurdle component, the occurrence of monthly autochthonous DF cases was significantly associated with monthly minimum temperature (Odds Ratio (OR): 1.64; 95% CI: 1.01-2.67). CONCLUSIONS/SIGNIFICANCE Our research suggested that incidences of monthly autochthonous DF were strongly positively associated with monthly imported DF cases, local minimum temperature and inter-month relative humidity variability in Cairns. Moreover, DF outbreak in Cairns was driven by imported DF cases only under favourable seasons and weather conditions in the study.
Resumo:
BACKGROUND: Dengue fever (DF) is one of the most important emerging arboviral human diseases. Globally, DF incidence has increased by 30-fold over the last fifty years, and the geographic range of the virus and its vectors has expanded. The disease is now endemic in more than 120 countries in tropical and subtropical parts of the world. This study examines the spatiotemporal trends of DF transmission in the Asia-Pacific region over a 50-year period, and identified the disease's cluster areas. METHODOLOGY AND FINDINGS: The World Health Organization's DengueNet provided the annual number of DF cases in 16 countries in the Asia-Pacific region for the period 1955 to 2004. This fifty-year dataset was divided into five ten-year periods as the basis for the investigation of DF transmission trends. Space-time cluster analyses were conducted using scan statistics to detect the disease clusters. This study shows an increasing trend in the spatiotemporal distribution of DF in the Asia-Pacific region over the study period. Thailand, Vietnam, Laos, Singapore and Malaysia are identified as the most likely clusters (relative risk = 13.02) of DF transmission in this region in the period studied (1995 to 2004). The study also indicates that, for the most part, DF transmission has expanded southwards in the region. CONCLUSIONS: This information will lead to the improvement of DF prevention and control strategies in the Asia-Pacific region by prioritizing control efforts and directing them where they are most needed.
Resumo:
An outbreak detection and response system, using time series moving percentile method based on historical data, in China has been used for identifying dengue fever outbreaks since 2008. For dengue fever outbreaks reported from 2009 to 2012, this system achieved a sensitivity of 100%, a specificity of 99.8% and a median time to detection of 3 days, which indicated that the system was a useful decision tool for dengue fever control and risk-management programs in China.