833 resultados para Data utility
Resumo:
A substantial body of literature exists identifying factors contributing to under-performing Enterprise Resource Planning systems (ERPs), including poor communication, lack of executive support and user dissatisfaction (Calisir et al., 2009). Of particular interest is Momoh et al.’s (2010) recent review identifying poor data quality (DQ) as one of nine critical factors associated with ERP failure. DQ is central to ERP operating processes, ERP facilitated decision-making and inter-organizational cooperation (Batini et al., 2009). Crucial in ERP contexts is that the integrated, automated, process driven nature of ERP data flows can amplify DQ issues, compounding minor errors as they flow through the system (Haug et al., 2009; Xu et al., 2002). However, the growing appreciation of the importance of DQ in determining ERP success lacks research addressing the relationship between stakeholders’ requirements and perceptions of ERP DQ, perceived data utility and the impact of users’ treatment of data on ERP outcomes.
Resumo:
While data quality has been identified as a critical factor associated with enterprise resource planning (ERP) failure, the relationship between ERP stakeholders, the information they require and its relationship to ERP outcomes continues to be poorly understood. Applying stakeholder theory to the problem of ERP performance, we put forward a framework articulating the fundamental differences in the way users differentiate between ERP data quality and utility. We argue that the failure of ERPs to produce significant organisational outcomes can be attributed to conflict between stakeholder groups over whether the data contained within an ERP is of adequate ‘quality’. The framework provides guidance as how to manage data flows between stakeholders, offering insight into each of their specific data requirements. The framework provides support for the idea that stakeholder affiliation dictates the assumptions and core values held by individuals, driving their data needs and their perceptions of data quality and utility.
Resumo:
Background Not all cancer patients receive state-of-the-art care and providing regular feedback to clinicians might reduce this problem. The purpose of this study was to assess the utility of various data sources in providing feedback on the quality of cancer care. Methods Published clinical practice guidelines were used to obtain a list of processes-of-care of interest to clinicians. These were assigned to one of four data categories according to their availability and the marginal cost of using them for feedback. Results Only 8 (3%) of 243 processes-of-care could be measured using population-based registry or administrative inpatient data (lowest cost). A further 119 (49%) could be measured using a core clinical registry, which contains information on important prognostic factors (e.g., clinical stage, physiological reserve, hormone-receptor status). Another 88 (36%) required an expanded clinical registry or medical record review; mainly because they concerned long-term management of disease progression (recurrences and metastases) and 28 (11.5%) required patient interview or audio-taping of consultations because they involved information sharing between clinician and patient. Conclusion The advantages of population-based cancer registries and administrative inpatient data are wide coverage and low cost. The disadvantage is that they currently contain information on only a few processes-of-care. In most jurisdictions, clinical cancer registries, which can be used to report on many more processes-of-care, do not cover smaller hospitals. If we are to provide feedback about all patients, not just those in larger academic hospitals with the most developed data systems, then we need to develop sustainable population-based data systems that capture information on prognostic factors at the time of initial diagnosis and information on management of disease progression.
Resumo:
Currently there are ~3000 known species of Sarcophagidae (Diptera), which are classified into 173 genera in three subfamilies. Almost 25% of sarcophagids belong to the genus Sarcophaga (sensu lato) however little is known about the validity of, and relationships between the ~150 (or more) subgenera of Sarcophaga s.l. In this preliminary study, we evaluated the usefulness of three sources of data for resolving relationships between 35 species from 14 Sarcophaga s.l. subgenera: the mitochondrial COI barcode region, ~800. bp of the nuclear gene CAD, and 110 morphological characters. Bayesian, maximum likelihood (ML) and maximum parsimony (MP) analyses were performed on the combined dataset. Much of the tree was only supported by the Bayesian and ML analyses, with the MP tree poorly resolved. The genus Sarcophaga s.l. was resolved as monophyletic in both the Bayesian and ML analyses and strong support was obtained at the species-level. Notably, the only subgenus consistently resolved as monophyletic was Liopygia. The monophyly of and relationships between the remaining Sarcophaga s.l. subgenera sampled remain questionable. We suggest that future phylogenetic studies on the genus Sarcophaga s.l. use combined datasets for analyses. We also advocate the use of additional data and a range of inference strategies to assist with resolving relationships within Sarcophaga s.l.
Resumo:
Objective: The objectives of this article are to explore the extent to which the International Statistical Classification of Diseases and Related Health Problems (ICD) has been used in child abuse research, to describe how the ICD system has been applied and to assess factors affecting the reliability of ICD coded data in child abuse research.----- Methods: PubMed, CINAHL, PsychInfo and Google Scholar were searched for peer reviewed articles written since 1989 that used ICD as the classification system to identify cases and research child abuse using health databases. Snowballing strategies were also employed by searching the bibliographies of retrieved references to identify relevant associated articles. The papers identified through the search were independently screened by two authors for inclusion, resulting in 47 studies selected for the review. Due to heterogeneity of studies metaanalysis was not performed.----- Results: This paper highlights both utility and limitations of ICD coded data. ICD codes have been widely used to conduct research into child maltreatment in health data systems. The codes appear to be used primarily to determine child maltreatment patterns within identified diagnoses or to identify child maltreatment cases for research.----- Conclusions: A significant impediment to the use of ICD codes in child maltreatment research is the under-ascertainment of child maltreatment by using coded data alone. This is most clearly identified and, to some degree, quantified, in research where data linkage is used. Practice Implications: The importance of improved child maltreatment identification will assist in identifying risk factors and creating programs that can prevent and treat child maltreatment and assist in meeting reporting obligations under the CRC.
Resumo:
Objective: To examine the sources of coding discrepancy for injury morbidity data and explore the implications of these sources for injury surveillance.-------- Method: An on-site medical record review and recoding study was conducted for 4373 injury-related hospital admissions across Australia. Codes from the original dataset were compared to the recoded data to explore the reliability of coded data aand sources of discrepancy.---------- Results: The most common reason for differences in coding overall was assigning the case to a different external cause category with 8.5% assigned to a different category. Differences in the specificity of codes assigned within a category accounted for 7.8% of coder difference. Differences in intent assignment accounted for 3.7% of the differences in code assignment.---------- Conclusions: In the situation where 8 percent of cases are misclassified by major category, the setting of injury targets on the basis of extent of burden is a somewhat blunt instrument Monitoring the effect of prevention programs aimed at reducing risk factors is not possible in datasets with this level of misclassification error in injury cause subcategories. Future research is needed to build the evidence base around the quality and utility of the ICD classification system and application of use of this for injury surveillance in the hospital environment.
Resumo:
This study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, "to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice" (Gable et al, 2006). IS-Impact is defined as "a measure at a point in time, of the stream of net benefits from the IS [Information System], to date and anticipated, as perceived by all key-user-groups" (Gable Sedera and Chan, 2008). Track efforts have yielded the bicameral IS-Impact measurement model; the "impact" half includes Organizational-Impact and Individual-Impact dimensions; the "quality" half includes System-Quality and Information-Quality dimensions. The IS-Impact model, by design, is intended to be robust, simple and generalisable, to yield results that are comparable across time, stakeholders, different systems and system contexts. The model and measurement approach employs perceptual measures and an instrument that is relevant to key stakeholder groups, thereby enabling the combination or comparison of stakeholder perspectives. Such a validated and widely accepted IS-Impact measurement model has both academic and practical value. It facilitates systematic operationalisation of a main dependent variable in research (IS-Impact), which can also serve as an important independent variable. For IS management practice it provides a means to benchmark and track the performance of information systems in use. From examination of the literature, the study proposes that IS-Impact is an Analytic Theory. Gregor (2006) defines Analytic Theory simply as theory that ‘says what is’, base theory that is foundational to all other types of theory. The overarching research question thus is "Does IS-Impact positively manifest the attributes of Analytic Theory?" In order to address this question, we must first answer the question "What are the attributes of Analytic Theory?" The study identifies the main attributes of analytic theory as: (1) Completeness, (2) Mutual Exclusivity, (3) Parsimony, (4) Appropriate Hierarchy, (5) Utility, and (6) Intuitiveness. The value of empirical research in Information Systems is often assessed along the two main dimensions - rigor and relevance. Those Analytic Theory attributes associated with the ‘rigor’ of the IS-Impact model; namely, completeness, mutual exclusivity, parsimony and appropriate hierarchy, have been addressed in prior research (e.g. Gable et al, 2008). Though common tests of rigor are widely accepted and relatively uniformly applied (particularly in relation to positivist, quantitative research), attention to relevance has seldom been given the same systematic attention. This study assumes a mainly practice perspective, and emphasises the methodical evaluation of the Analytic Theory ‘relevance’ attributes represented by the Utility and Intuitiveness of the IS-Impact model. Thus, related research questions are: "Is the IS-Impact model intuitive to practitioners?" and "Is the IS-Impact model useful to practitioners?" March and Smith (1995), identify four outputs of Design Science: constructs, models, methods and instantiations (Design Science research may involve one or more of these). IS-Impact can be viewed as a design science model, composed of Design Science constructs (the four IS-Impact dimensions and the two model halves), and instantiations in the form of management information (IS-Impact data organised and presented for management decision making). In addition to methodically evaluating the Utility and Intuitiveness of the IS-Impact model and its constituent constructs, the study aims to also evaluate the derived management information. Thus, further research questions are: "Is the IS-Impact derived management information intuitive to practitioners?" and "Is the IS-Impact derived management information useful to practitioners? The study employs a longitudinal design entailing three surveys over 4 years (the 1st involving secondary data) of the Oracle-Financials application at QUT, interspersed with focus groups involving senior financial managers. The study too entails a survey of Financials at four other Australian Universities. The three focus groups respectively emphasise: (1) the IS-Impact model, (2) the 2nd survey at QUT (descriptive), and (3) comparison across surveys within QUT, and between QUT and the group of Universities. Aligned with the track goal of producing IS-Impact scores that are highly comparable, the study also addresses the more specific utility-related questions, "Is IS-Impact derived management information a useful comparator across time?" and "Is IS-Impact derived management information a useful comparator across universities?" The main contribution of the study is evidence of the utility and intuitiveness of IS-Impact to practice, thereby further substantiating the practical value of the IS-Impact approach; and also thereby motivating continuing and further research on the validity of IS-Impact, and research employing the ISImpact constructs in descriptive, predictive and explanatory studies. The study also has value methodologically as an example of relatively rigorous attention to relevance. A further key contribution is the clarification and instantiation of the full set of analytic theory attributes.
Resumo:
This paper provides a review of the state of the art relevant work on the use of public mobile data networks for aircraft telemetry and control proposes. Moreover, it describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was the explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500 ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of - 77dbm. Latencies were in the order of 500ms (1/2 the latency of Iridium), an average download speed of 0.48Mb/s, average uplink speed of 0.85Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such communications architecture for both manned and unmanned aircraft systems.
Resumo:
This paper describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such a communications architecture for both manned and unmanned aircraft systems.
Resumo:
In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios
Resumo:
The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.
Resumo:
Here we present a sequential Monte Carlo approach to Bayesian sequential design for the incorporation of model uncertainty. The methodology is demonstrated through the development and implementation of two model discrimination utilities; mutual information and total separation, but it can also be applied more generally if one has different experimental aims. A sequential Monte Carlo algorithm is run for each rival model (in parallel), and provides a convenient estimate of the marginal likelihood (of each model) given the data, which can be used for model comparison and in the evaluation of utility functions. A major benefit of this approach is that it requires very little problem specific tuning and is also computationally efficient when compared to full Markov chain Monte Carlo approaches. This research is motivated by applications in drug development and chemical engineering.
Resumo:
Objectives: To evaluate the clinical value of pre-operative serum CA125 in predicting the presence of extra-uterine disease in patients with apparent early stage endometrial cancer. Methods: Between October 6, 2005 and June 17, 2010, 760 patients were enrolled in an international, multicentre, prospective randomized trial (LACE) comparing laparotomy with laparoscopy in the management of endometrial cancer apparently confined to the uterus. This study is based on data from 657 patients with endometrial adenocarcinoma who had a pre-operative serum CA125 value, and was undertaken to correlate pre-operative serum CA125 with final stage. Results: Using a pre-operative CA-125 cutpoint of 30U/ml was associated with the smallest misclassification error (14.5%) using a multiple cross-validation method. Median pre-operative serum CA-125 was 14U/ml, and using a cutpoint of 30U/ml, 14.9% of patients had elevated CA-125 levels. Of 98 patients with elevated CA-125 level, 36 (36.7%) had evidence of extra-uterine disease. Of the 116 patients (17.7%) with evidence of extra-uterine disease, 31.0% had elevated CA-125 level. In univariate and multivariate logistic regression analysis, only pre-operative CA-125 level was found to be associated with extra-uterine spread of disease. Utilising a cutpoint of 30U/ml achieved a sensitivity, specificity, positive predictive value and negative predictive value of 31.0%, 88.5%, 36.7% and 85.7% respectively. Overall, 326/657 (49.6%) of patients had full surgical staging involving lymph node dissection. When analysis was limited to patients that had undergone full surgical staging, the outcomes remained essentially unchanged. Conclusions: Elevated CA-125 above 30U/ml in patients with apparent early stage disease is associated with a sensitivity of 31.0% and specificity of 88.5% in detecting extra-uterine disease. Pre-operative identification of this risk factor may assist to triage patients to tertiary centres and comprehensive surgical staging.
Resumo:
Mandatory data breach notification laws are a novel statutory solution in relation to organizational protections of personal information. They require organizations which have suffered a breach of security involving personal information to notif'y those persons whose information may have been affected. These laws originated in the state based legislatures of the United States during the last decade and have subsequently garnered worldwide legislative interest. Despite their perceived utility, mandatory data breach notification laws have several conceptual and practical concems that limit the scope of their applicability, particularly in relation to existing information privacy law regimes. We outline these concerns, and in doing so, we contend that while mandatory data breach notification laws have many useful facets, their utility as an 'add-on' to enhance the failings of current information privacy law frameworks should not necessarily be taken for granted.
Resumo:
The IEEE Subcommittee on the Application of Probability Methods (APM) published the IEEE Reliability Test System (RTS) [1] in 1979. This system provides a consistent and generally acceptable set of data that can be used both in generation capacity and in composite system reliability evaluation [2,3]. The test system provides a basis for the comparison of results obtained by different people using different methods. Prior to its publication, there was no general agreement on either the system or the data that should be used to demonstrate or test various techniques developed to conduct reliability studies. Development of reliability assessment techniques and programs are very dependent on the intent behind the development as the experience of one power utility with their system may be quite different from that of another utility. The development and the utilization of a reliability program are, therefore, greatly influenced by the experience of a utlity and the intent of the system manager, planner and designer conducting the reliability studies. The IEEE-RTS has proved to be extremely valuable in highlighting and comparing the capabilities (or incapabilities) of programs used in reliability studies, the differences in the perception of various power utilities and the differences in the solution techniques. The IEEE-RTS contains a reasonably large power network which can be difficult to use for initial studies in an educational environment.