201 resultados para Dale Carnegie
Resumo:
This paper describes an architecture for robotic telepresence and teleoperation based on the well known tools ROS and Skype. We discuss how Skype can be used as a framework for robotic communication and can be integrated into a ROS/Linux framework to allow a remote user to not only interact with people near the robot, but to view maps, sensory data, robot pose and to issue commands to the robot’s navigation stack. This allows the remote user to exploit the robot’s autonomy, providing a much more convenient navigation interface than simple remote joysticking.
Resumo:
This paper introduces a high-speed, 100Hz, visionbased state estimator that is suitable for quadrotor control in close quarters manoeuvring applications. We describe the hardware and algorithms for estimating the state of the quadrotor. Experimental results for position, velocity and yaw angle estimators are presented and compared with motion capture data. Quantitative performance comparison with state-of-the-art achievements are also presented.
Resumo:
Service robots that operate in human environments will accomplish tasks most efficiently and least disruptively if they have the capability to mimic and understand the motion patterns of the people in their workspace. This work demonstrates how a robot can create a humancentric navigational map online, and that this map re ects changes in the environment that trigger altered motion patterns of people. An RGBD sensor mounted on the robot is used to detect and track people moving through the environment. The trajectories are clustered online and organised into a tree-like probabilistic data structure which can be used to detect anomalous trajectories. A costmap is reverse engineered from the clustered trajectories that can then inform the robot's onboard planning process. Results show that the resultant paths taken by the robot mimic expected human behaviour and can allow the robot to respond to altered human motion behaviours in the environment.
Resumo:
Changing environments present a number of challenges to mobile robots, one of the most significant being mapping and localisation. This problem is particularly significant in vision-based systems where illumination and weather changes can cause feature-based techniques to fail. In many applications only sections of an environment undergo extreme perceptual change. Some range-based sensor mapping approaches exploit this property by combining occasional place recognition with the assumption that odometry is accurate over short periods of time. In this paper, we develop this idea in the visual domain, by using occasional vision-driven loop closures to infer loop closures in nearby locations where visual recognition is difficult due to extreme change. We demonstrate successful map creation in an environment in which change is significant but constrained to one area, where both the vanilla CAT-Graph and a Sum of Absolute Differences matcher fails, use the described techniques to link dissimilar images from matching locations, and test the robustness of the system against false inferences.
Resumo:
Many state of the art vision-based Simultaneous Localisation And Mapping (SLAM) and place recognition systems compute the salience of visual features in their environment. As computing salience can be problematic in radically changing environments new low resolution feature-less systems have been introduced, such as SeqSLAM, all of which consider the whole image. In this paper, we implement a supervised classifier system (UCS) to learn the salience of image regions for place recognition by feature-less systems. SeqSLAM only slightly benefits from the results of training, on the challenging real world Eynsham dataset, as it already appears to filter less useful regions of a panoramic image. However, when recognition is limited to specific image regions performance improves by more than an order of magnitude by utilising the learnt image region saliency. We then investigate whether the region salience generated from the Eynsham dataset generalizes to another car-based dataset using a perspective camera. The results suggest the general applicability of an image region salience mask for optimizing route-based navigation applications.
Resumo:
Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.
Resumo:
This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.
Resumo:
This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. Our method achieves minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing- only visual servoing approach. We provide theoretical problem formulation, as well as results from real flights using small quadrotors
Resumo:
Covertly tracking mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms requires both visual and acoustic stealth. Whilst the use of robots for stealthy surveillance is not new, the majority only consider navigation for visual covertness. However, most fielded robotic systems have a non-negligible acoustic footprint arising from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. This time-varying acoustic signature can jeopardise any visual covertness and needs to be addressed in any stealthy navigation strategy. In previous work, we addressed the initial concepts for acoustically masking a tracking robot’s movements as it travels between observation locations selected to minimise its detectability by a dynamic natural target and ensuring con- tinuous visual tracking of the target. This work extends the overall concept by examining the utility of real-time acoustic signature self-assessment and exploiting shadows as hiding locations for use in a combined visual and acoustic stealth framework.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.