176 resultados para DORSAL PERIAQUEDUCTAL GRAY MATTER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced mismatch negativity (MMN) in response to auditory change is a well-established finding in schizophrenia and has been shown to be correlated with impaired daily functioning, rather than with hallmark signs and symptoms of the disorder. In this study, we investigated (1) whether the relationship between reduced MMN and impaired daily functioning is mediated by cortical volume loss in temporal and frontal brain regions in schizophrenia and (2) whether this relationship varies with the type of auditory deviant generating MMN. MMN in response to duration, frequency, and intensity deviants was recorded from 18 schizophrenia subjects and 18 pairwise age- and gender-matched healthy subjects. Patients’ levels of global functioning were rated on the Social and Occupational Functioning Assessment Scale. High-resolution structural magnetic resonance scans were acquired to generate average cerebral cortex and temporal lobe models using cortical pattern matching. This technique allows accurate statistical comparison and averaging of cortical measures across subjects, despite wide variations in gyral patterns. MMN amplitude was reduced in schizophrenia patients and correlated with their impaired day-to-day function level. Only in patients, bilateral gray matter reduction in Heschl’s gyrus, as well as motor and executive regions of the frontal cortex, correlated with reduced MMN amplitude in response to frequency deviants, while reduced gray matter in right Heschl’s gyrus also correlated with reduced MMN to duration deviants. Our findings further support the importance of MMN reduction in schizophrenia by linking frontotemporal cerebral gray matter pathology to an automatically generated event-related potential index of daily functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We detected and mapped a dynamically spreading wave of gray matter loss in the brains of patients with Alzheimer's disease (AD). The loss pattern was visualized in four dimensions as it spread over time from temporal and limbic cortices into frontal and occipital brain regions, sparing sensorimotor cortices. The shifting deficits were asymmetric (left hemisphere > right hemisphere) and correlated with progressively declining cognitive status (p < 0.0006). Novel brain mapping methods allowed us to visualize dynamic patterns of atrophy in 52 high-resolution magnetic resonance image scans of 12 patients with AD (age 68.4 ± 1.9 years) and 14 elderly matched controls (age 71.4 ± 0.9 years) scanned longitudinally (two scans; interscan interval 2.1 ± 0.4 years). A cortical pattern matching technique encoded changes in brain shape and tissue distribution across subjects and time. Cortical atrophy occurred in a well defined sequence as the disease progressed, mirroring the sequence of neurofibrillary tangle accumulation observed in cross sections at autopsy. Advancing deficits were visualized as dynamic maps that change over time. Frontal regions, spared early in the disease, showed pervasive deficits later (< 15% loss). The maps distinguished different phases of AD and differentiated AD from normal aging. Local gray matter loss rates (5.3 ± 2.3% per year in AD v 0.9 ± 0.9% per year in controls) were faster in the left hemisphere (p < 0.029) than the right. Transient barriers to disease progression appeared at limbic/frontal boundaries. This degenerative sequence, observed in vivo as it developed, provides the first quantitative, dynamic visualization of cortical atrophic rates in normal elderly populations and in those with dementia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. High-angular resolution diffusion imaging (HARDI) can resolve more complex diffusion geometries than standard DTI, including fibers crossing or mixing. The tensor distribution function (TDF) can be used to reconstruct multiple underlying fibers per voxel, representing the diffusion profile as a probabilistic mixture of tensors. Here we found that DTIderived mean diffusivity (MD) correlates well with actual individual fiber MD, but DTI-derived FA correlates poorly with actual individual fiber anisotropy, and may be suboptimal when used to detect disease processes that affect myelination. Analysis of the TDFs revealed that almost 40% of voxels in the white matter had more than one dominant fiber present. To more accurately assess fiber integrity in these cases, we here propose the differential diffusivity (DD), which measures the average anisotropy based on all dominant directions in each voxel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Childhood-onset type 1 diabetes is associated with neurocognitive deficits, but there is limited evidence to date regarding associated neuroanatomical brain changes and their relationship to illness variables such as age at disease onset. This report examines age-related changes in volume and T2 relaxation time (a fundamental parameter of magnetic resonance imaging that reflects tissue health) across the whole brain. RESEARCH DESIGN AND METHODS: Type 1 diabetes, N = 79 (mean age 20.32 ± 4.24 years), and healthy control participants, N = 50 (mean age 20.53 ± 3.60 years). There were no substantial group differences on socioeconomic status, sex ratio, or intelligence quotient. RESULTS: Regression analyses revealed a negative correlation between age and brain changes, with decreasing gray matter volume and T2 relaxation time with age in multiple brain regions in the type 1 diabetes group. In comparison, the age-related decline in the control group was small. Examination of the interaction of group and age confirmed a group difference (type 1 diabetes vs. control) in the relationship between age and brain volume/T2 relaxation time. CONCLUSIONS: We demonstrated an interaction between age and group in predicting brain volumes and T2 relaxation time such that there was a decline in these outcomes in type 1 diabetic participants that was much less evident in control subjects. Findings suggest the neurodevelopmental pathways of youth with type 1 diabetes have diverged from those of their healthy peers by late adolescence and early adulthood but the explanation for this phenomenon remains to be clarified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To investigate the impact of new-onset diabetic ketoacidosis (DKA) during child- hood on brain morphology and function. RESEARCH DESIGN AND METHODS Patients aged 6–18 years with and without DKA at diagnosis were studied at four time points: <48 h, 5 days, 28 days, and 6 months postdiagnosis. Patients under- went magnetic resonance imaging (MRI) and spectroscopy with cognitive assess- ment at each time point. Relationships between clinical characteristics at presentation and MRI and neurologic outcomes were examined using multiple linear regression, repeated-measures, and ANCOVA analyses. RESULTS Thirty-six DKA and 59 non-DKA patients were recruited between 2004 and 2009. With DKA, cerebral white matter showed the greatest alterations with increased total white matter volume and higher mean diffusivity in the frontal, temporal, and parietal white matter. Total white matter volume decreased over the first 6 months. For gray matter in DKA patients, total volume was lower at baseline and increased over 6 months. Lower levels of N-acetylaspartate were noted at base- line in the frontal gray matter and basal ganglia. Mental state scores were lower at baseline and at 5 days. Of note, although changes in total and regional brain volumes over the first 5 days resolved, they were associated with poorer delayed memory recall and poorer sustained and divided attention at 6 months. Age at time of presentation and pH level were predictors of neuroimaging and functional outcomes. CONCLUSIONS DKA at type 1 diabetes diagnosis results in morphologic and functional brain changes. These changes are associated with adverse neurocognitive outcomes in the medium term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its three-dimensional folding pattern, the human neocortex; poses a challenge for accurate co-registration of grouped functional; brain imaging data. The present study addressed this problem by; employing three-dimensional continuum-mechanical image-warping; techniques to derive average anatomical representations for coregistration; of functional magnetic resonance brain imaging data; obtained from 10 male first-episode schizophrenia patients and 10 age-matched; male healthy volunteers while they performed a version of the; Tower of London task. This novel technique produced an equivalent; representation of blood oxygenation level dependent (BOLD) response; across hemispheres, cortical regions, and groups, respectively, when; compared to intensity average co-registration, using a deformable; Brodmann area atlas as anatomical reference. Somewhat closer; association of Brodmann area boundaries with primary visual and; auditory areas was evident using the gyral pattern average model.; Statistically-thresholded BOLD cluster data confirmed predominantly; bilateral prefrontal and parietal, right frontal and dorsolateral; prefrontal, and left occipital activation in healthy subjects, while; patients’ hemispheric dominance pattern was diminished or reversed,; particularly decreasing cortical BOLD response with increasing task; difficulty in the right superior temporal gyrus. Reduced regional gray; matter thickness correlated with reduced left-hemispheric prefrontal/; frontal and bilateral parietal BOLD activation in patients. This is the; first study demonstrating that reduction of regional gray matter in; first-episode schizophrenia patients is associated with impaired brain; function when performing the Tower of London task, and supports; previous findings of impaired executive attention and working memory; in schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past several years, evidence has accumulated showing that the cerebellum plays a significant role in cognitive function. Here we show, in a large genetically informative twin sample (n= 430; aged 16-30. years), that the cerebellum is strongly, and reliably (n=30 rescans), activated during an n-back working memory task, particularly lobules I-IV, VIIa Crus I and II, IX and the vermis. Monozygotic twin correlations for cerebellar activation were generally much larger than dizygotic twin correlations, consistent with genetic influences. Structural equation models showed that up to 65% of the variance in cerebellar activation during working memory is genetic (averaging 34% across significant voxels), most prominently in the lobules VI, and VIIa Crus I, with the remaining variance explained by unique/unshared environmental factors. Heritability estimates for brain activation in the cerebellum agree with those found for working memory activation in the cerebral cortex, even though cerebellar cyto-architecture differs substantially. Phenotypic correlations between BOLD percent signal change in cerebrum and cerebellum were low, and bivariate modeling indicated that genetic influences on the cerebellum are at least partly specific to the cerebellum. Activation on the voxel-level correlated very weakly with cerebellar gray matter volume, suggesting specific genetic influences on the BOLD signal. Heritable signals identified here should facilitate discovery of genetic polymorphisms influencing cerebellar function through genome-wide association studies, to elucidate the genetic liability to brain disorders affecting the cerebellum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imaging genetics is a new field of neuroscience that blends methods from computational anatomy and quantitative genetics to identify genetic influences on brain structure and function. Here we analyzed brain MRI data from 372 young adult twins to identify cortical regions in which gray matter volume is influenced by genetic differences across subjects. Thickness maps, reconstructed from surface models of the cortical gray/white and gray/CSF interfaces, were smoothed with a 25 mm FWHM kernel and automatically parcellated into 34 regions of interest per hemisphere. In structural equation models fitted to volume values at each surface vertex, we computed components of variance due to additive genetic (A), shared (C) and unique (E) environmental factors, and tested their significance. Cortical regions in the vicinity of the perisylvian language cortex, and at the frontal and temporal poles, showed significant additive genetic variance, suggesting that volume measures from these regions may provide quantitative phenotypes to narrow the search for quantitative trait loci that influence brain structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed brain MRI data from 372 young adult twins toidentify cortical regions in which gray matter thickness and volume are influenced by genetics. This was achieved using an A/C/E structural equation model that divides the variance of these traits, at each point on the cortex, into additive genetic (A), shared (C), and unique environmental (E) components. A strong genetic influencewas found in frontal and parietal regions. Inaddition, we correlated cortical thickness with full-scale intelligence quotient for comparison with the A/C/E maps, and several regions where cortical structure was correlated with intelligence quotient are under genetic control. These cortical measures may be useful phenotypes to narrow the searchfor quantitative trait lociinfluencing brain structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This issue on the genetics of brain imaging phenotypes is a celebration of the happy marriage between two of science's highly interesting fields: neuroscience and genetics. The articles collected here are ample evidence that a good deal of synergy exists in this marriage. A wide selection of papers is presented that provide many different perspectives on how genes cause variation in brain structure and function, which in turn influence behavioral phenotypes (including psychopathology). They are examples of the many different methodologies in contemporary genetics and neuroscience research. Genetic methodology includes genome-wide association (GWA), candidate-gene association, and twin studies. Sources of data on brain phenotypes include cortical gray matter (GM) structural/volumetric measures from magnetic resonance imaging (MRI); white matter (WM) measures from diffusion tensor imaging (DTI), such as fractional anisotropy; functional- (activity-) based measures from electroencephalography (EEG), and functional MRI (fMRI). Together, they reflect a combination of scientific fields that have seen great technological advances, whether it is the single-nucleotide polymorphism (SNP) array in genetics, the increasingly high-resolution MRI imaging, or high angular resolution diffusion imaging technique for measuring WM connective properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. With High-angular resolution diffusion imaging (HARDI) and the tensor distribution function (TDF), one can reconstruct multiple underlying fibers per voxel and their individual anisotropy measures by representing the diffusion profile as a probabilistic mixture of tensors. We found that FA, when compared with TDF-derived anisotropy measures, correlates poorly with individual fiber anisotropy, and may sub-optimally detect disease processes that affect myelination. By contrast, mean diffusivity (MD) as defined in standard DTI appears to be more accurate. Overall, we argue that novel measures derived from the TDF approach may yield more sensitive and accurate information than DTI-derived measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to assess the heritability of cerebral cortex, based on measurements of grey matter (GM) thickness derived from structural MR images (sMRI). With data acquired from a large twin cohort (328 subjects), an automated method was used to estimate the cortical thickness, and EM-ICP surface registration algorithm was used to establish the correspondence of cortex across the population. An ACE model was then employed to compute the heritability of cortical thickness. Heritable cortical thickness measures various cortical regions, especially in frontal and parietal lobes, such as bilateral postcentral gyri, superior occipital gyri, superior parietal gyri, precuneus, the orbital part of the right frontal gyrus, right medial superior frontal gyrus, right middle occipital gyrus, right paracentral lobule, left precentral gyrus, and left dorsolateral superior frontal gyrus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous report, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association.