134 resultados para Computer-Aided Engineering and Design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an atmosphere where civilization is progressing and becoming more aware of the consequences of careless development decisions, rethinking sustainable development - particularly sustainable urban and infrastructure development - has become an inevitable necessity. ------ ----- Rethinking Sustainable Development: Urban Management, Engineering, and Design considers the role of urban, regional and infrastructure planning in achieving sustainable urban and infrastructure development, providing insights into overcoming the consequences of unsustainable development. This companion volume to Sustainable Urban and Regional Infrastructure: Technology, Planning and Management, overviews all aspects of sustainable urban and infrastructure development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer aided joint replacement surgery has become very popular during recent years and is being done in increasing numbers all over the world. The accuracy of the system depends to a major extent, on accurate registration and immobility of the tracker attachment devices to the bone. This study was designed to asses the forces needed to displace the tracker attachment devices in the bone simulators. Bone simulators were used to maintain the uniformity of the bone structure during the study. The fixation devices tested were 3mm diameter self drilling, self tapping threaded pin, 4mm diameter self tapping cortical threaded pin, 5mm diameter self tapping cancellous threaded pin and a triplanar fixation device ‘ortholock’ used with three 3mm pins. All the devices were tested for pull out, translational and rotational forces in unicortical and bicortical fixation modes. Also tested was the normal bang strength and forces generated by leaning on the devices. The forces required to produce translation increased with the increasing diameter of the pins. These were 105N, 185N, and 225N for the unicortical fixations and 130N, 200N, 225N for the bicortical fixations for 3mm, 4mm and 5mm diameter pins respectively. The forces required to pull out the pins were 1475N, 1650N, 2050N for the unicortical, 1020N, 3044N and 3042N for the bicortical fixated 3mm, 4mm and 5mm diameter pins. The ortholock translational and pull out strength was tested to 900N and 920N respectively and still it did not fail. Rotatory forces required to displace the tracker on pins was to the magnitude of 30N before failure. The ortholock device had rotational forces applied up to 135N and still did not fail. The manual leaning forces and the sudden bang forces generated were of the magnitude of 210N and 150N respectively. The strength of the fixation pins increases with increasing diameter from three to five mm for the translational forces. There is no significant difference in pull out forces of four mm and five mm diameter pins though it is more that the three mm diameter pins. This is because of the failure of material at that stage rather than the fixation device. The rotatory forces required to displace the tracker are very small and much less that that can be produced by the surgeon or assistants in single pins. Although the ortholock device was tested to 135N in rotation without failing, one has to be very careful not to put any forces during the operation on the tracker devices to ensure the accuracy of the procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrified railway system includes complex interconnections and interactions of several subsystems. Computer simulation is the only viable means for system evaluation and analysis. This paper discusses the difficulties and requirements of effective simulation models for this specialized industrial application; and the development of a general-purpose multi-train simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital Human Models (DHM) have been used for over 25 years. They have evolved from simple drawing templates, which are nowadays still used in architecture, to complex and Computer Aided Engineering (CAE) integrated design and analysis tools for various ergonomic tasks. DHM are most frequently used for applications in product design and production planning, with many successful implementations documented. DHM from other domains, as for example computer user interfaces, artificial intelligence, training and education, or the entertainment industry show that there is also an ongoing development towards a comprehensive understanding and holistic modeling of human behavior. While the development of DHM for the game sector has seen significant progress in recent years, advances of DHM in the area of ergonomics have been comparatively modest. As a consequence, we need to question if current DHM systems are fit for the design of future mobile work systems. So far it appears that DHM in Ergonomics are rather limited to some traditional applications. According to Dul et al. (2012), future characteristics of Human Factors and Ergonomics (HFE) can be assigned to six main trends: (1) global change of work systems, (2) cultural diversity, (3) ageing, (4) information and communication technology (ICT), (5) enhanced competiveness and the need for innovation, and; (6) sustainability and corporate social responsibility. Based on a literature review, we systematically investigate the capabilities of current ergonomic DHM systems versus the ‘Future of Ergonomics’ requirements. It is found that DHMs already provide broad functionality in support of trends (1) and (2), and more limited options in regards to trend (3). Today’s DHM provide access to a broad range of national and international databases for correct differentiation and characterization of anthropometry for global populations. Some DHM explicitly address social and cultural modeling of groups of people. In comparison, the trends of growing importance of ICT (4), the need for innovation (5) and sustainability (6) are addressed primarily from a hardware-oriented and engineering perspective and not reflected in DHM. This reflects a persistent separation between hardware design (engineering) and software design (information technology) in the view of DHM – a disconnection which needs to be urgently overcome in the era of software defined user interfaces and mobile devices. The design of a mobile ICT-device is discussed to exemplify the need for a comprehensive future DHM solution. Designing such mobile devices requires an approach that includes organizational aspects as well as technical and cognitive ergonomics. Multiple interrelationships between the different aspects result in a challenging setting for future DHM. In conclusion, the ‘Future of Ergonomics’ pose particular challenges for DHM in regards to the design of mobile work systems, and moreover mobile information access.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the number of potential applications of Unmanned Aircraft Systems (UAS) grows in civilian operations and national security, National Airworthiness Authorities are under increasing pressure to provide a path for certification and allow UAS integration into the national airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the latter and describes the use of a framework for evaluating robust autonomy of UAS, namely, the autonomous system’s ability to either continue operation in the presence of faults or safely shut down. The paper draws parallels between the proposed evaluation framework and the evaluation of pilots during the licensing process. It also discusses how the data from the proposed evaluation can be uses as an aid for decision making in certification and UAS designs.