186 resultados para Compact Dual Band Planar Antenna
Resumo:
Reconfigurable antennas capable of radiating in only specific desired directions increase system functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a horizontally polarized, direction reconfigurable Vivaldi antenna, designed for the lower-band UWB (2-6 GHz). This design employs eight circularly distributed independent Vivaldi antennas with a common port, electronically controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 4 GHz (2-6 GHz), with 5 dB gain in the desired direction and capable of steering over the 360° range.
Resumo:
Antennas are a necessary and critical component of communications and radar systems, but their inability to adjust to new operating scenarios can sometimes limit the system performance. Reconfigurable antennas capable of radiating in only specific desired directions can ameliorate these restrictions and help to achieve increased functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a wide-band, horizontally polarized, direction reconfigurable microstrip antenna operating at 2.45 GHz. The design employs a central horizontally polarized omnidirectional active element surrounded by electronically reconfigurable parasitic microstrip elements, controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 40% (2-3 GHz), with 3 dB gain in the desired direction and capable of steering over the 360° range.
Resumo:
Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.
Resumo:
A modified microstrip-fed planar monopole antenna with open circuited coupled line is presented in this paper. The operational bandwidth of the proposed antenna covers the 2.4 GHz ISM band (2.42-2.48 GHz) and the 5 GHz WLAN band (5 GHz to 6 GHz). The radiating elements occupy a small area of 23×8 mm2. The Finite Difference Time Domain method is used to predict the input impedance of the antenna. The calculated return loss shows very good agreement with measured data. Reasonable antenna gain is observed across the operating band. The measured radiation patterns are similar to those of a simple monopole antenna.
Resumo:
A practical method for the design of dual-band decoupling and matching networks (DMN) for two closely spaced antennas using discrete components is presented. The DMN reduces the port-to-port coupling and enhances the diversity of the antennas. By applying the DMN, the radiation efficiency can also be improved when one port is fed and the other port is match terminated. The proposed DMN works at two frequencies simultaneously without the need for any switch. As a proof of concept, a dual-band DMN for a pair of monopoles spaced 0.05λ apart is designed. The measured return loss and port isolation exceed 10 dB from 1.71 GHz to 1.76 GHz and from 2.27 GHz to 2.32 GHz.
Resumo:
Constant development of new wireless standards increases the demand for more radiating elements in compact end-user platforms. A decrease in antenna separation gives rise to increased antenna coupling, resulting in a reduction of the signal-to-interference-plus-noise-ratio (SINR) between transmitter and receiver. This paper proposes a decoupling network which provides dual band port isolation for a pair of distinct antennas. A prototype has been fabricated to verify the theory.
Resumo:
The demand for high-speed data services for portable device has become a driving force for development of advanced broadband access technologies. Despite recent advances in broadband wireless technologies, there remain a number of critical issues to be resolved. One of the major concerns is the implementation of compact antennas that can operate in a wide frequency band. Spiral antenna has been used extensively for broadband applications due to its planar structure, wide bandwidth characteristics and circular polarisation. However, the practical implementation of spiral antennas is challenged by its high input characteristic impedance, relatively low gain and the need for balanced feeding structures. Further development of wideband balanced feeding structures for spiral antennas with matching impedance capabilities remain a need. This thesis proposes three wideband feeding systems for spiral antennas which are compatible with wideband array antenna geometries. First, a novel tapered geometry is proposed for a symmetric coplanar waveguide (CPW) to coplanar strip line (CPS) wideband balun. This balun can achieve the unbalanced to balanced transformation while matching the high input impedance of the antenna to a reference impedance of 50 . The discontinuity between CPW and CPS is accommodated by using a radial stub and bond wires. The bandwidth of the balun is improved by appropriately tapering the CPW line instead of using a stepped impedance transformer. Next, the tapered design is applied to an asymmetric CPW to propose a novel asymmetric CPW to CPS wideband balun. The use of asymmetric CPW does away with the discontinuities between CPW and CPS without having to use a radial stub or bond wires. Finally, a tapered microstrip line to parallel striplines balun is proposed. The balun consists of two sections. One section is the parallel striplines which are connected to the antenna, with the impedance of balanced line equal to the antenna input impedance. The other section consists of a microstrip line where the width of the ground plane is gradually reduced to eventually resemble a parallel stripline. The taper accomplishes the mode and impedance transformation. This balun has significantly improved bandwidth characteristics. Characteristics of proposed feeding structures are measured in a back-to-back configuration and compared to simulated results. The simulated and measured results show the tapered microstrip to parallel striplines balun to have more than three octaves of bandwidth. The tapered microstrip line to parallel striplines balun is integrated with a single Archimedean spiral antenna and with an array of spiral antennas. The performance of the integrated structures is simulated with the aid of electromagnetic simulation software, and results are compared to measurements. The back-to-back microstrip to parallel strip balun has a return loss of better than 10 dB over a wide bandwidth from 1.75 to 15 GHz. The performance of the microstrip to parallel strip balun was validated with the spiral antennas. The results show the balun to be an effective mean of feeding network with a low profile and wide bandwidth (2.5 to 15 GHz) for balanced spiral antennas.
Resumo:
A tunable decoupling and matching network (DMN) for a closely spaced two-element antenna array is presented. The DMN achieves perfect matching for the eigenmodes of the array and thus simultaneously isolates and matches the system ports while keeping the circuit small. Arrays of closely spaced wire and microstrip monopole pairs are used to demonstrate the proposed DMN. It is found that monopoles with different lengths can be used for the design frequency by using this DMN, which increases the design flexibility. This property also enables frequency tuning using the DMN only without having to change the length of the antennas. The proposed DMN uses only one varactor to achieve a tuning range of 18.8% with both return loss and isolation better than 10-dB when the spacing between the antenna is 0.05λ. When the spacing increases to 0.1λ, the simulated tuning range is more than 60%.
Resumo:
Decoupling networks can alleviate the effects of mutual coupling in antenna arrays. Conventional decoupling networks can provide decoupled and matched ports at a single frequency. This paper describes dual-frequency decoupling which is achieved by using a network of series or parallel resonant circuits instead of single reactive elements.
Resumo:
An element spacing of less than half a wavelength introduces strong mutual coupling between the ports of compact antenna arrays. The strong coupling causes significant system performance degradation. A decoupling network may compensate for the mutual coupling. Alternatively, port decoupling can be achieved using a modal feed network. In response to an input signal at one of the input ports, this feed network excites the antenna elements in accordance with one of the eigenvectors of the array scattering parameter matrix. In this paper, a novel 4-element monopole array is described. The feed network of the array is implemented as a planar ring-type circuit in stripline with four coupled line sections. The new configuration offers a significant reduction in size, resulting in a very compact array.
Resumo:
The small element spacing of compact multiport arrays introduces strong mutual coupling between the antenna ports. Due to this coupling, the input impedance of the array changes when elements excitations are varied, and consequently, the array cannot be matched for an arbitrary excitation. Decoupling networks have in the past been used to provide an additional connection between antenna ports in order to cancel the coupling between elements. An alternative approach is to design the antenna so that each port does not excite a single element, but all elements simultaneously instead. The geometry of the antenna is optimized so that this direct excitation of elements counteracts the mutual coupling, thus yielding decoupled ports. This paper describes the design of such a 4-port antenna.
Resumo:
Small element spacing in compact arrays results in strong mutual coupling between array elements. Performance degradation associated with the strong coupling can be avoided through the introduction of a decoupling network consisting of interconnected reactive elements. We present a systematic design procedure for decoupling networks of symmetrical arrays with more than three elements and characterized by circulant scattering parameter matrices. The elements of the decoupling network are obtained through repeated decoupling of the characteristic eigenmodes of the array, which allows the calculation of element values using closed-form expressions.
Resumo:
Beam steering with high front-to-back ratio and high directivity on a small platform is proposed. Two closely spaced antenna pairs with eigenmode port decoupling are used as the basic radiating elements. Two orthogonal radiation patterns are obtained for each antenna pair. High front-to-back ratio and high directivity are achieved by combining the two orthogonal radiation patterns. With an infinite groundplane, a front-to-back ratio of 21 dB with a directivity of 9.8 dB can be achieved. Beam steering, at the expense of a slight decrease in directivity, is achieved by placing the two antenna pairs 0.5λ apart. The simulated half power beamwidth is 58°. A prototype was designed and the 2-D radiation patterns were measured. The prototype supports three directions of beam steering. The half power beamwidth was measured as 46°, 48°, and 50° for the three respective beam directions. The measured front-to-back ratio in azimuth plane is 8.5 dB, 8.0 dB and 7.6 dB, respectively.
Resumo:
A novel reduced-size microstrip rectangular patch antenna for Bluetooth operation is presented in this paper. The proposed antenna operates in the 2400 to 2484 MHz ISM Band. Although an air substrate is introduced, antenna occupies a small volume of 33.3×6.6×0.8 mm3. The gain and the impedance bandwidth of the antenna are predicted using a commercial Finite Element Method software package. The predicted results show good agreement with measured data.
Resumo:
Smart antenna receiver and transmitter systems consist of multi-port arrays with an individual receiver channel (including ADC) and an individual transmitter channel (including DAC)at every of the M antenna ports, respectively. By means of digital beamforming, an unlimited number of simultaneous complex-valued vector radiation patterns with M-1 degrees of freedom can be formed. Applications of smart antennas in communication systems include space-division multiple access. If both stations of a communication link are equipped with smart antennas (multiple-input-multiple-output, MIMO). multiple independent channels can be formed in a "multi-path-rich" environment. In this article, it will be shown that under certain circumstances, the correlation between signals from adjacent ports of a dense array (M + ΔM elements) can be kept as low as the correlation between signals from adjacent ports of a conventional array (M elements and half-wavelength pacing). This attractive feature is attained by means of a novel approach which employs a RF decoupling network at the array ports in order to form new ports which are decoupled and associated with mutually orthogonal (de-correlated) radiation patterns.