152 resultados para Coastal landscape
Resumo:
Bargara Pasturage Reserve: Future Visions This exhibition showcases the work of Postgraduate Landscape Architecture and final year Undergraduate Civil and Environmental Engineering students in response to issues of sustainability in a coastal wetland known as the Bargara Pasturage Reserve; an exemplar of the many issues facing sensitive coastal places in Queensland today. The 312ha Pasturage Reserve at Bargara is the only biofilter between the pressures of Bargara’s urban and tourism expansion, surrounding sugarcane farming, and the Great Sandy Marine Park, including the largest concentration of nesting marine turtles on the eastern Australian mainland. This ephemeral wetland, while struggling to fulfil its coastal biofiltration function, is also in high demand for passive recreation, and the project partners’ priorities were to meet both of these challenges. The students were required to plan and design for the best balance possible amongst, but not limited to: wetland and coastal ecological health, enhancement of cultural heritage and values, sustainable urban development, and local economic health. To understand these challenges, QUT staff and students met with partners, visited and analysed the Pasturage Reserve, spent time in and around Bargara talking to locals and inviting dialogue with Indigenous representatives and the South Sea Islander community. We then went home to Brisbane to undertake theoretical and technical research, and then worked to produce 11 Strategic Plans, 2 Environmental Management Plans and 33 Detailed Designs. One group of students analysed the Bargara coastal landscape as an historical and ongoing series of conversations between ecological systems, cultural heritage, community and stakeholders. Another group identified the landscape as neither ‘urban,’ ‘rural,’ nor ‘natural,’ instead identifying it metaphorically as a series of layered thematic ‘fields’ such as water, conservation, reconciliation, and educational fields. These landscape analyses became the organising mechanisms for strategic planning. An outstanding Strategic Plan was produced by Zhang, Lemberg and Jensen, entitled Metanoia, which means to ‘make a change as the result of reflection on values’. Three implementation phases of “flow”, “flux”, and “flex” span twenty-five years, and present a vision a coastal and marine research and conservation hub, with a focus on coastal wetland function, turtle habitat and coral reef conservation. An Environmental Management Plan by Brand and Stickland focuses on protecting and improving wetland biodiversity and habitat quality, and increasing hydrological and water quality function; vital in a coastal area of such high conservation value. After the planning phase, students individually developed detailed design proposals responsive to their plans. From Metanoia, Zhang concentrated on wetland access and interpretation, proposing four focal places to form the nucleus of a wider pattern of connectivity, and to encourage community engagement with coastal environmental management and education. Jensen tackled the thorny issue of coastal urban development, proposing a sensitive staged eco-village model which maintains both ecological and recreational connectivity between the wetland and the marine environment. This project offered QUT’s partners many innovative options to inform their future planning. BSC, BMRG and Oceanwatch Australia are currently engaged in the investigation of on-ground opportunities drawing on these options.
Resumo:
Coastal communities face the social, cultural and environmental challenges of managing rapid urban and industrial development, expanding tourism, and sensitive ecological environments. Enriching relationships between communities and universities through a structured engagement process can deliver integrated options towards sustainable coastal futures. This process draws on the embedded knowledge and values of all participants in the relationship, and offers a wide and affordable range of options for the future. This paper reviews lessons learnt from two projects with coastal communities, and discusses their application in a third. Queensland University of Technology has formed collaborative partnerships with industry in Queensland's Wide Bay-Burnett region to undertake a series of planning and design projects with community engagement as a central process. Senior students worked with community and produced design and planning drawings and reports outlining future options for project areas. A reflective approach has been adopted by the authors to assess the engagement process and outcomes of each project to learn lessons to apply in the next. Methods include surveying community and student participants regarding the value they place on process and outcomes respectively in planning for a sustainable future. All project participants surveyed have placed high importance on the process of engagement, emphasising the value of developing relationships between all project partners. The quality of these relationships is central to planning for sustainable futures, and while the outcomes the students deliver are valued, it is as much for their catalytic role as for their contents. Design and planning projects through community engagement have been found to develop innovative responses to the challenges faced by coastal communities seeking direction toward sustainable futures. The enrichment of engagement relationships and processes has an important influence on the quality of these design and planning responses.
Resumo:
The measures by which major developments are officially approved for construction are - by common agreement - complex, time-consuming, and of questionable merit in terms of maintaining ecological viability.
Resumo:
The growing public concern about the complexity, cost and uncertain efficacy of the statuary environmental impact assessment process applying to large-scale projects in Queensland is reviewed. This is based on field data gathered over the past six years sat large-scale marina developments that access major environmental reserves along the coast. An ecological design proposal to broaden the process consisted with both government aspirations and regional ecological parameters - termed Regional Landscape Strategies - would allow the existing Environmental Impact Asessment to be modified alone potentially more practicable and effective lines.
Resumo:
The unique combination of landscapes and processes that are present and operate on Fraser Island (K'gari) create a dynamic setting that is capable of recording past environmental events, climate variations and former landscapes. Likewise, its geographic position makes Fraser Island sensitive to those events and processes. Based on optically stimulated luminescence dating, the records archived within the world's largest sand island span a period that has the potential to exceed 750 ka and contain specific records that are of extremely high resolution over the past 40,000 years. This is due to the geographic position of Fraser Island, which lies in the coastal subtropical region of Queensland Australia. Fraser Island is exposed to the open ocean currents of the Coral Sea on the east coast and the waters of Hervey Bay on its western margin and is positioned to receive moisture from the Indo-Australian monsoon, southeast trade winds and experiences occasional tropical and ex-tropical cyclones. We review literature that presents the current level of understanding of sea level change, ecological variation and environmental change on Fraser Island. The previous works illustrate the importance of Fraser Island and may link processes, environments and climates on Fraser Island with global records.
Resumo:
The occurrence of and conditions favourable to nucleation were investigated at an industrial and commercial coastal location in Brisbane, Australia during five different campaigns covering a total period of 13 months. To identify potential nucleation events, the difference in number concentration in the size range 14-30 nm (N14-30) between consecutive observations was calculated using first-order differencing. The data showed that nucleation events were a rare occurrence, and that in the absence of nucleation the particle number was dominated by particles in the range 30-300 nm. In many instances, total particle concentration declined during nucleation. There was no clear pattern in change in NO and NO2 concentrations during the events. SO2 concentration, in the majority of cases, declined during nucleation but there were exceptions. Most events took place in summer, followed by winter and then spring, and no events were observed for the autumn campaigns. The events were associated with sea breeze and long-range transport. Roadside emissions, in contrast, did not contribute to nucleation, probably due to the predominance of particles in the range 50-100 nm associated with these emissions.
Resumo:
A month-long intensive measurement campaign was conducted in March/April 2007 at Agnes Water, a remote coastal site just south of the Great Barrier Reef on the east coast of Australia. Particle and ion size distributions were continuously measured during the campaign. Coastal nucleation events were observed in clean, marine air masses coming from the south-east on 65% of the days. The events usually began at ~10:00 local time and lasted for 1-4 hrs. They were characterised by the appearance of a nucleation mode with a peak diameter of ~10 nm. The freshly nucleated particles grew within 1-4 hrs up to sizes of 20-50 nm. The events occurred when solar intensity was high (~1000 W m-2) and RH was low (~60%). Interestingly, the events were not related to tide height. The volatile and hygroscopic properties of freshly nucleated particles (17-22.5 nm), simultaneously measured with a volatility-hygroscopicity-tandem differential mobility analyser (VH-TDMA), were used to infer chemical composition. The majority of the volume of these particles was attributed to internally mixed sulphate and organic components. After ruling out coagulation as a source of significant particle growth, we conclude that the condensation of sulphate and/or organic vapours was most likely responsible for driving particle growth during the nucleation events. We cannot make any direct conclusions regarding the chemical species that participated in the initial particle nucleation. However, we suggest that nucleation may have resulted from the photo-oxidation products of unknown sulphur or organic vapours emitted from the waters of Hervey Bay, or from the formation of DMS-derived sulphate clusters over the open ocean that were activated to observable particles by condensable vapours emitted from the nutrient rich waters around Fraser Island or Hervey Bay. Furthermore, a unique and particularly strong nucleation event was observed during northerly wind. The event began early one morning (08:00) and lasted almost the entire day resulting in the production of a large number of ~80 nm particles (average modal concentration during the event was 3200 cm-3). The Great Barrier Reef was the most likely source of precursor vapours responsible for this event.
Resumo:
This short paper presents a means of capturing non spatial information (specifically understanding of places) for use in a Virtual Heritage application. This research is part of the Digital Songlines Project which is developing protocols, methodologies and a toolkit to facilitate the collection and sharing of Indigenous cultural heritage knowledge, using virtual reality. Within the context of this project most of the cultural activities relate to celebrating life and to the Australian Aboriginal people, land is the heart of life. Australian Indigenous art, stories, dances, songs and rituals celebrate country as its focus or basis. To the Aboriginal people the term “Country” means a lot more than a place or a nation, rather “Country” is a living entity with a past a present and a future; they talk about it in the same way as they talk about their mother. The landscape is seen to have a spiritual connection in a view seldom understood by non-indigenous persons; this paper introduces an attempt to understand such empathy and relationship and to reproduce it in a virtual environment.