359 resultados para Clustering techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a statistical aircraft trajectory clustering approach aimed at discriminating between typical manned and expected unmanned traffic patterns. First, a resampled version of each trajectory is modelled using a mixture of Von Mises distributions (circular statistics). Second, the remodelled trajectories are globally aligned using tools from bioinformatics. Third, the alignment scores are used to cluster the trajectories using an iterative k-medoids approach and an appropriate distance function. The approach is then evaluated using synthetically generated unmanned aircraft flights combined with real air traffic position reports taken over a sector of Northern Queensland, Australia. Results suggest that the technique is useful in distinguishing between expected unmanned and manned aircraft traffic behaviour, as well as identifying some common conventional air traffic patterns.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the growing number of XML documents on theWeb it becomes essential to effectively organise these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. However, many issues arise in discovering knowledge from these types of semi-structured documents due to their heterogeneity and structural irregularity. Most of the existing research on clustering techniques focuses only on one feature of the XML documents, this being either their structure or their content due to scalability and complexity problems. The knowledge gained in the form of clusters based on the structure or the content is not suitable for reallife datasets. It therefore becomes essential to include both the structure and content of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both these kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. The overall objective of this thesis is to address these issues by: (1) proposing methods to utilise frequent pattern mining techniques to reduce the dimension; (2) developing models to effectively combine the structure and content of XML documents; and (3) utilising the proposed models in clustering. This research first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. A clustering framework with two types of models, implicit and explicit, is developed. The implicit model uses a Vector Space Model (VSM) to combine the structure and the content information. The explicit model uses a higher order model, namely a 3- order Tensor Space Model (TSM), to explicitly combine the structure and the content information. This thesis also proposes a novel incremental technique to decompose largesized tensor models to utilise the decomposed solution for clustering the XML documents. The proposed framework and its components were extensively evaluated on several real-life datasets exhibiting extreme characteristics to understand the usefulness of the proposed framework in real-life situations. Additionally, this research evaluates the outcome of the clustering process on the collection selection problem in the information retrieval on the Wikipedia dataset. The experimental results demonstrate that the proposed frequent pattern mining and clustering methods outperform the related state-of-the-art approaches. In particular, the proposed framework of utilising frequent structures for constraining the content shows an improvement in accuracy over content-only and structure-only clustering results. The scalability evaluation experiments conducted on large scaled datasets clearly show the strengths of the proposed methods over state-of-the-art methods. In particular, this thesis work contributes to effectively combining the structure and the content of XML documents for clustering, in order to improve the accuracy of the clustering solution. In addition, it also contributes by addressing the research gaps in frequent pattern mining to generate efficient and concise frequent subtrees with various node relationships that could be used in clustering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the goal of identifying disease subgroups based on differences in observed symptom profile is considered. Commonly referred to as phenotype identification, solutions to this task often involve the application of unsupervised clustering techniques. In this paper, we investigate the application of a Dirichlet Process mixture (DPM) model for this task. This model is defined by the placement of the Dirichlet Process (DP) on the unknown components of a mixture model, allowing for the expression of uncertainty about the partitioning of observed data into homogeneous subgroups. To exemplify this approach, an application to phenotype identification in Parkinson’s disease (PD) is considered, with symptom profiles collected using the Unified Parkinson’s Disease Rating Scale (UPDRS). Clustering, Dirichlet Process mixture, Parkinson’s disease, UPDRS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The continuous growth of the XML data poses a great concern in the area of XML data management. The need for processing large amounts of XML data brings complications to many applications, such as information retrieval, data integration and many others. One way of simplifying this problem is to break the massive amount of data into smaller groups by application of clustering techniques. However, XML clustering is an intricate task that may involve the processing of both the structure and the content of XML data in order to identify similar XML data. This research presents four clustering methods, two methods utilizing the structure of XML documents and the other two utilizing both the structure and the content. The two structural clustering methods have different data models. One is based on a path model and other is based on a tree model. These methods employ rigid similarity measures which aim to identifying corresponding elements between documents with different or similar underlying structure. The two clustering methods that utilize both the structural and content information vary in terms of how the structure and content similarity are combined. One clustering method calculates the document similarity by using a linear weighting combination strategy of structure and content similarities. The content similarity in this clustering method is based on a semantic kernel. The other method calculates the distance between documents by a non-linear combination of the structure and content of XML documents using a semantic kernel. Empirical analysis shows that the structure-only clustering method based on the tree model is more scalable than the structure-only clustering method based on the path model as the tree similarity measure for the tree model does not need to visit the parents of an element many times. Experimental results also show that the clustering methods perform better with the inclusion of the content information on most test document collections. To further the research, the structural clustering method based on tree model is extended and employed in XML transformation. The results from the experiments show that the proposed transformation process is faster than the traditional transformation system that translates and converts the source XML documents sequentially. Also, the schema matching process of XML transformation produces a better matching result in a shorter time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ranking documents according to the Probability Ranking Principle has been theoretically shown to guarantee optimal retrieval effectiveness in tasks such as ad hoc document retrieval. This ranking strategy assumes independence among document relevance assessments. This assumption, however, often does not hold, for example in the scenarios where redundancy in retrieved documents is of major concern, as it is the case in the sub–topic retrieval task. In this chapter, we propose a new ranking strategy for sub–topic retrieval that builds upon the interdependent document relevance and topic–oriented models. With respect to the topic– oriented model, we investigate both static and dynamic clustering techniques, aiming to group topically similar documents. Evidence from clusters is then combined with information about document dependencies to form a new document ranking. We compare and contrast the proposed method against state–of–the–art approaches, such as Maximal Marginal Relevance, Portfolio Theory for Information Retrieval, and standard cluster–based diversification strategies. The empirical investigation is performed on the ImageCLEF 2009 Photo Retrieval collection, where images are assessed with respect to sub–topics of a more general query topic. The experimental results show that our approaches outperform the state–of–the–art strategies with respect to a number of diversity measures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automated process discovery techniques aim at extracting process models from information system logs. Existing techniques in this space are effective when applied to relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate models when confronted to logs with high variability. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. This leads to a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity and low fitness. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically using subprocess extraction. Splitting is performed in a controlled manner in order to achieve user-defined complexity or fitness thresholds. Experiments on real-life logs show that the technique produces collections of models substantially smaller than those extracted by applying existing trace clustering techniques, while allowing the user to control the fitness of the resulting models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we describe the approaches adopted to generate the runs submitted to ImageCLEFPhoto 2009 with an aim to promote document diversity in the rankings. Four of our runs are text based approaches that employ textual statistics extracted from the captions of images, i.e. MMR [1] as a state of the art method for result diversification, two approaches that combine relevance information and clustering techniques, and an instantiation of Quantum Probability Ranking Principle. The fifth run exploits visual features of the provided images to re-rank the initial results by means of Factor Analysis. The results reveal that our methods based on only text captions consistently improve the performance of the respective baselines, while the approach that combines visual features with textual statistics shows lower levels of improvements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data associated with germplasm collections are typically large and multivariate with a considerable number of descriptors measured on each of many accessions. Pattern analysis methods of clustering and ordination have been identified as techniques for statistically evaluating the available diversity in germplasm data. While used in many studies, the approaches have not dealt explicitly with the computational consequences of large data sets (i.e. greater than 5000 accessions). To consider the application of these techniques to germplasm evaluation data, 11328 accessions of groundnut (Arachis hypogaea L) from the International Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India were examined. Data for nine quantitative descriptors measured in the rainy and post-rainy growing seasons were used. The ordination technique of principal component analysis was used to reduce the dimensionality of the germplasm data. The identification of phenotypically similar groups of accessions within large scale data via the computationally intensive hierarchical clustering techniques was not feasible and non-hierarchical techniques had to be used. Finite mixture models that maximise the likelihood of an accession belonging to a cluster were used to cluster the accessions in this collection. The patterns of response for the different growing seasons were found to be highly correlated. However, in relating the results to passport and other characterisation and evaluation descriptors, the observed patterns did not appear to be related to taxonomy or any other well known characteristics of groundnut.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The value of soil evidence in the forensic discipline is well known. However, it would be advantageous if an in-situ method was available that could record responses from tyre or shoe impressions in ground soil at the crime scene. The development of optical fibres and emerging portable NIR instruments has unveiled a potential methodology which could permit such a proposal. The NIR spectral region contains rich chemical information in the form of overtone and combination bands of the fundamental infrared absorptions and low-energy electronic transitions. This region has in the past, been perceived as being too complex for interpretation and consequently was scarcely utilized. The application of NIR in the forensic discipline is virtually non-existent creating a vacancy for research in this area. NIR spectroscopy has great potential in the forensic discipline as it is simple, nondestructive and capable of rapidly providing information relating to chemical composition. The objective of this study is to investigate the ability of NIR spectroscopy combined with Chemometrics to discriminate between individual soils. A further objective is to apply the NIR process to a simulated forensic scenario where soil transfer occurs. NIR spectra were recorded from twenty-seven soils sampled from the Logan region in South-East Queensland, Australia. A series of three high quartz soils were mixed with three different kaolinites in varying ratios and NIR spectra collected. Spectra were also collected from six soils as the temperature of the soils was ramped from room temperature up to 6000C. Finally, a forensic scenario was simulated where the transferral of ground soil to shoe soles was investigated. Chemometrics methods such as the commonly known Principal Component Analysis (PCA), the less well known fuzzy clustering (FC) and ranking by means of multicriteria decision making (MCDM) methodology were employed to interpret the spectral results. All soils were characterised using Inductively Coupled Plasma Optical Emission Spectroscopy and X-Ray Diffractometry. Results were promising revealing NIR combined with Chemometrics is capable of discriminating between the various soils. Peak assignments were established by comparing the spectra of known minerals with the spectra collected from the soil samples. The temperature dependent NIR analysis confirmed the assignments of the absorptions due to adsorbed and molecular bound water. The relative intensities of the identified NIR absorptions reflected the quantitative XRD and ICP characterisation results. PCA and FC analysis of the raw soils in the initial NIR investigation revealed that the soils were primarily distinguished on the basis of their relative quartz and kaolinte contents, and to a lesser extent on the horizon from which they originated. Furthermore, PCA could distinguish between the three kaolinites used in the study, suggesting that the NIR spectral region was sensitive enough to contain information describing variation within kaolinite itself. The forensic scenario simulation PCA successfully discriminated between the ‘Backyard Soil’ and ‘Melcann® Sand’, as well as the two sampling methods employed. Further PCA exploration revealed that it was possible to distinguish between the various shoes used in the simulation. In addition, it was possible to establish association between specific sampling sites on the shoe with the corresponding site remaining in the impression. The forensic application revealed some limitations of the process relating to moisture content and homogeneity of the soil. These limitations can both be overcome by simple sampling practices and maintaining the original integrity of the soil. The results from the forensic scenario simulation proved that the concept shows great promise in the forensic discipline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) are temporary wireless networks useful in emergency rescue services, battlefields operations, mobile conferencing and a variety of other useful applications. Due to dynamic nature and lack of centralized monitoring points, these networks are highly vulnerable to attacks. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. We take benefit of the clustering concept in MANETs for the effective communication between nodes, where each cluster involves a number of member nodes and is managed by a cluster-head. It can be taken as an advantage in these battery and memory constrained networks for the purpose of intrusion detection, by separating tasks for the head and member nodes, at the same time providing opportunity for launching collaborative detection approach. The clustering schemes are generally used for the routing purposes to enhance the route efficiency. However, the effect of change of a cluster tends to change the route; thus degrades the performance. This paper presents a low overhead clustering algorithm for the benefit of detecting intrusion rather than efficient routing. It also discusses the intrusion detection techniques with the help of this simplified clustering scheme.