715 resultados para Cancer biomarkers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the second leading cause of cancer-related deaths in North American males and the most common newly diagnosed cancer in men world wide. Biomarkers are widely used for both early detection and prognostic tests for cancer. The current, commonly used biomarker for CaP is serum prostate specific antigen (PSA). However, the specificity of this biomarker is low as its serum level is not only increased in CaP but also in various other diseases, with age and even body mass index. Human body fluids provide an excellent resource for the discovery of biomarkers, with the advantage over tissue/biopsy samples of their ease of access, due to the less invasive nature of collection. However, their analysis presents challenges in terms of variability and validation. Blood and urine are two human body fluids commonly used for CaP research, but their proteomic analyses are limited both by the large dynamic range of protein abundance making detection of low abundance proteins difficult and in the case of urine, by the high salt concentration. To overcome these challenges, different techniques for removal of high abundance proteins and enrichment of low abundance proteins are used. Their applications and limitations are discussed in this review. A number of innovative proteomic techniques have improved detection of biomarkers. They include two dimensional differential gel electrophoresis (2D-DIGE), quantitative mass spectrometry (MS) and functional proteomic studies, i.e., investigating the association of post translational modifications (PTMs) such as phosphorylation, glycosylation and protein degradation. The recent development of quantitative MS techniques such as stable isotope labeling with amino acids in cell culture (SILAC), isobaric tags for relative and absolute quantitation (iTRAQ) and multiple reaction monitoring (MRM) have allowed proteomic researchers to quantitatively compare data from different samples. 2D-DIGE has greatly improved the statistical power of classical 2D gel analysis by introducing an internal control. This chapter aims to review novel CaP biomarkers as well as to discuss current trends in biomarker research from two angles: the source of biomarkers (particularly human body fluids such as blood and urine), and emerging proteomic approaches for biomarker research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evaluation of protein and metabolite expression patterns in blood using mass spectrometry and high-throughput antibody-based screening platforms has potential for the discovery of new biomarkers for managing breast cancer patient treatment. Previously identified blood-based breast cancer biomarkers, including cancer antigen 15.3 (CA15-3) are useful in combination with imaging (computed tomography scans, magnetic resonance imaging, X-rays) and physical examination for monitoring tumour burden in advanced breast cancer patients. However, these biomarkers suffer from insufficient levels of accuracy and with new therapies available for the treatment of breast cancer, there is an urgent need for reliable, non-invasive biomarkers that measure tumour burden with high sensitivity and specificity so as to provide early warning of the need to switch to an alternative treatment. The aim of this study was to identify a biomarker signature of tumour burden using cancer and non-cancer (healthy controls/non-malignant breast disease) patient samples. Results demonstrate that combinations of three candidate biomarkers from Glutamate, 12-Hydroxyeicosatetraenoic acid, Beta-hydroxybutyrate, Factor V and Matrix metalloproteinase-1 with CA15-3, an established biomarker for breast cancer, were found to mirror tumour burden, with AUC values ranging from 0.71 to 0.98 when comparing non-malignant breast disease to the different stages of breast cancer. Further validation of these biomarker panels could potentially facilitate the management of breast cancer patients, especially to assess changes in tumour burden in combination with imaging and physical examination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Caveolin-1 has a complex role in prostate cancer and has been suggested to be a potential biomarker and therapeutic target. As mature caveolin-1 resides in caveolae, invaginated lipid raft domains at the plasma membrane, caveolae have been suggested as a tumor-promoting signaling platform in prostate cancer. However, caveola formation requires both caveolin-1 and cavin-1 (also known as PTRF; polymerase I and transcript release factor). Here, we examined the expression of cavin-1 in prostate epithelia and stroma using tissue microarray including normal, non-malignant and malignant prostate tissues. We found that caveolin-1 was induced without the presence of cavin-1 in advanced prostate carcinoma, an expression pattern mirrored in the PC-3 cell line. In contrast, normal prostate epithelia expressed neither caveolin-1 nor cavin-1, while prostate stroma highly expressed both caveolin-1 and cavin-1. Utilizing PC-3 cells as a suitable model for caveolin-1-positive advanced prostate cancer, we found that cavin-1 expression in PC-3 cells inhibits anchorage-independent growth, and reduces in vivo tumor growth and metastasis in an orthotopic prostate cancer xenograft mouse model. The expression of α-smooth muscle actin in stroma along with interleukin-6 (IL-6) in cancer cells was also decreased in tumors of mice bearing PC-3-cavin-1 tumor cells. To determine whether cavin-1 acts by neutralizing caveolin-1, we expressed cavin-1 in caveolin-1-negative prostate cancer LNCaP and 22Rv1 cells. Caveolin-1 but not cavin-1 expression increased anchorage-independent growth in LNCaP and 22Rv1 cells. Cavin-1 co-expression reversed caveolin-1 effects in caveolin-1-positive LNCaP cells. Taken together, these results suggest that caveolin-1 in advanced prostate cancer is present outside of caveolae, because of the lack of cavin-1 expression. Cavin-1 expression attenuates the effects of non-caveolar caveolin-1 microdomains partly via reduced IL-6 microenvironmental function. With circulating caveolin-1 as a potential biomarker for advanced prostate cancer, identification of the molecular pathways affected by cavin-1 could provide novel therapeutic targets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The role of exosomes in cancer development has become the focus of much research, due to the many emerging roles possessed by exosomes. These micro-vesicles that are ubiquitously released in to the extracellular milieu, have been found to regulate immune system function, particularly in tumorigenesis, as well as conditioning future metastatic sites for the attachment and growth of tumor tissue. Through an interaction with a range of host tissue, exosomes are able to generate a pro-tumor environment that is essential for carcinogenesis. Herein, we discuss the contents of exosomes and their contribution to tumorigenesis, as well as their role in chemotherapeutic resistance and the development of novel cancer treatments and the identification of cancer biomarkers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small non-coding RNAs of 20 nt in length that are capable of modulating gene expression post-transcriptionally. Although miRNAs have been implicated in cancer, including breast cancer, the regulation of miRNA transcription and the role of defects in this process in cancer is not well understood. In this study we have mapped the promoters of 93 breast cancer-associated miRNAs, and then looked for associations between DNA methylation of 15 of these promoters and miRNA expression in breast cancer cells. The miRNA promoters with clearest association between DNA methylation and expression included a previously described and a novel promoter of the Hsa-mir-200b cluster. The novel promoter of the Hsa-mir-200b cluster, denoted P2, is located 2 kb upstream of the 5′ stemloop and maps within a CpG island. P2 has comparable promoter activity to the previously reported promoter (P1), and is able to drive the expression of miR-200b in its endogenous genomic context. DNA methylation of both P1 and P2 was inversely associated with miR-200b expression in eight out of nine breast cancer cell lines, and in vitro methylation of both promoters repressed their activity in reporter assays. In clinical samples, P1 and P2 were differentially methylated with methylation inversely associated with miR-200b expression. P1 was hypermethylated in metastatic lymph nodes compared with matched primary breast tumours whereas P2 hypermethylation was associated with loss of either oestrogen receptor or progesterone receptor. Hypomethylation of P2 was associated with gain of HER2 and androgen receptor expression. These data suggest an association between miR-200b regulation and breast cancer subtype and a potential use of DNA methylation of miRNA promoters as a component of a suite of breast cancer biomarkers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prostate cancer is a leading contributor to male cancer-related deaths worldwide. Kallikrein-related peptidases (KLKs) are serine proteases that exhibit deregulated expression in prostate cancer, with KLK3, or prostate specific antigen (PSA), being the widely-employed clinical biomarker for prostate cancer. Other KLKs, such as KLK2, show promise as prostate cancer biomarkers and, additionally, their altered expression has been utilised for the design of KLK-targeted therapies. There is also a large body of in vitro and in vivo evidence supporting their role in cancer-related processes. Here, we review the literature on studies to date investigating the potential of other KLKs, in addition to PSA, as biomarkers and in therapeutic options, as well as their current known functional roles in cancer progression. Increased knowledge of these KLK-mediated functions, including degradation of the extracellular matrix, local invasion, cancer cell proliferation, interactions with fibroblasts, angiogenesis, migration, bone metastasis and tumour growth in vivo, may help define new roles as prognostic biomarkers and novel therapeutic targets for this cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lung cancer is the second most common type of cancer in the world and is the most common cause of cancer-related death in both men and women. Research into causes, prevention and treatment of lung cancer is ongoing and much progress has been made recently in these areas, however survival rates have not significantly improved. Therefore, it is essential to develop biomarkers for early diagnosis of lung cancer, prediction of metastasis and evaluation of treatment efficiency, as well as using these molecules to provide some understanding about tumour biology and translate highly promising findings in basic science research to clinical application. In this investigation, two-dimensional difference gel electrophoresis and mass spectrometry were initially used to analyse conditioned media from a panel of lung cancer and normal bronchial epithelial cell lines. Significant proteins were identified with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), pyruvate kinase M2 isoform (PKM2), Hsc-70 interacting protein and lactate dehydrogenase A (LDHA) selected for analysis in serum from healthy individuals and lung cancer patients. hnRNPA2B1, PKM2 and LDHA were found to be statistically significant in all comparisons. Tissue analysis and knockdown of hnRNPA2B1 using siRNA subsequently demonstrated both the overexpression and potential role for this molecule in lung tumorigenesis. The data presented highlights a number of in vitro derived candidate biomarkers subsequently verified in patient samples and also provides some insight into their roles in the complex intracellular mechanisms associated with tumour progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Findings from the phase 3 FLEX study showed that the addition of cetuximab to cisplatin and vinorelbine significantly improved overall survival, compared with cisplatin and vinorelbine alone, in the first-line treatment of EGFR-expressing, advanced non-small-cell lung cancer (NSCLC). We investigated whether candidate biomarkers were predictive for the efficacy of chemotherapy plus cetuximab in this setting. Methods: Genomic DNA extracted from formalin-fixed paraffin-embedded (FFPE) tumour tissue of patients enrolled in the FLEX study was screened for KRAS codon 12 and 13 and EGFR kinase domain mutations with PCR-based assays. In FFPE tissue sections, EGFR copy number was assessed by dual-colour fluorescence in-situ hybridisation and PTEN expression by immunohistochemistry. Treatment outcome was investigated according to biomarker status in all available samples from patients in the intention-to-treat population. The primary endpoint in the FLEX study was overall survival. The FLEX study, which is ongoing but not recruiting participants, is registered with ClinicalTrials.gov, number NCT00148798. Findings: KRAS mutations were detected in 75 of 395 (19%) tumours and activating EGFR mutations in 64 of 436 (15%). EGFR copy number was scored as increased in 102 of 279 (37%) tumours and PTEN expression as negative in 107 of 303 (35%). Comparisons of treatment outcome between the two groups (chemotherapy plus cetuximab vs chemotherapy alone) according to biomarker status provided no indication that these biomarkers were of predictive value. Activating EGFR mutations were identified as indicators of good prognosis, with patients in both treatment groups whose tumours carried such mutations having improved survival compared with those whose tumours did not (chemotherapy plus cetuximab: median 17·5 months [95% CI 11·7-23·4] vs 8·5 months [7·1-10·8], hazard ratio [HR] 0·52 [0·32-0·84], p=0·0063; chemotherapy alone: 23·8 months [15·2-not reached] vs 10·0 months [8·7-11·0], HR 0·35 [0·21-0·59], p<0·0001). Expression of PTEN seemed to be a potential indicator of good prognosis, with patients whose tumours expressed PTEN having improved survival compared with those whose tumours did not, although this finding was not significant (chemotherapy plus cetuximab: median 11·4 months [8·6-13·6] vs 6·8 months [5·9-12·7], HR 0·80 [0·55-1·16], p=0·24; chemotherapy alone: 11·0 months [9·2-12·6] vs 9·3 months [7·6-11·9], HR 0·77 [0·54-1·10], p=0·16). Interpretation: The efficacy of chemotherapy plus cetuximab in the first-line treatment of advanced NSCLC seems to be independent of each of the biomarkers assessed. Funding: Merck KGaA. © 2011 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed “low risk”, as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2’–deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The Second ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on management of patients with nonsmall- cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, early stage disease, locally advanced disease and advanced (metastatic) disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on recommendations for pathology and molecular biomarkers in relation to the diagnosis of lung cancer, primarily non-small-cell carcinomas.