946 resultados para Cancer Genomics
Resumo:
Background/Aim: Since microRNAs (miRNAs) act as translational regulators of multiple genes, single nucleotide polymorphisms (SNP) in them can have potentially wide-ranging effects. Using an association approach, this research examined the effects of the rs6505162 SNP, an A>C polymorphism located in the premiRNA region of miR-423, on breast cancer development. Materials and Methods: Caucasian Australian women with breast cancer and controls matched for age and ethnicity were genotyped for rs6505162 and their genotypic and allelic frequencies analysed for significant differences. Results: Analysis indicated that there were significant differences between the case and control populations (χ 2=6.70, p=0.035), with the CC genotype conferring reduced risk of breast cancer development (odds ratio=0.50 95% confidence interval=0.27-0.92, p=0.03). Conclusion: Further functional research is required to determine the mechanism of action of this SNP on miRNA function.
Resumo:
The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies.
Resumo:
While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.
Resumo:
Background The purpose of this study was to identify candidate metastasis suppressor genes from a mouse allograft model of prostate cancer (NE-10). This allograft model originally developed metastases by twelve weeks after implantation in male athymic nude mice, but lost the ability to metastasize after a number of in vivo passages. We performed high resolution array comparative genomic hybridization on the metastasizing and non-metastasizing allografts to identify chromosome imbalances that differed between the two groups of tumors. Results This analysis uncovered a deletion on chromosome 2 that differed between the metastasizing and non-metastasizing tumors. Bioinformatics filters were employed to mine this region of the genome for candidate metastasis suppressor genes. Of the 146 known genes that reside within the region of interest on mouse chromosome 2, four candidate metastasis suppressor genes (Slc27a2, Mall, Snrpb, and Rassf2) were identified. Quantitative expression analysis confirmed decreased expression of these genes in the metastasizing compared to non-metastasizing tumors. Conclusion This study presents combined genomics and bioinformatics approaches for identifying potential metastasis suppressor genes. The genes identified here are candidates for further studies to determine their functional role in inhibiting metastases in the NE-10 allograft model and human prostate cancer.
Resumo:
Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2’–deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.
Resumo:
Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.