321 resultados para CHAIN TRANSFER POLYMERIZATION
Resumo:
The present article gives an overview of the reversible addition fragmentation chain transfer (RAFT) process. RAFT is one of the most versatile living radical polymerization systems and yields polymers of predictable chain length and narrow molecular weight distribution. RAFT relies on the rapid exchange of thiocarbonyl thio groups between growing polymeric chains. The key strengths of the RAFT process for polymer design are its high tolerance of monomer functionality and reaction conditions, the wide range of well-controlled polymeric architectures achievable, and its (in-principle) non-rate-retarding nature. This article introduces the mechanism of polymerization, the range of polymer molecular weights achievable, the range of monomers in which polymerization is controlled by RAFT, the various polymeric architectures that can be obtained, the type of end-group functionalities available to RAFT-made polymers, and the process of RAFT polymerization.
Resumo:
We report the photoinduced conjugation of polymers synthesized via reversible addition−fragmentation chain transfer (RAFT) polymerization with a number of low molecular weight (functional) olefins. Upon irradiation of a solution of an aliphatic alkene and the benzyl dithioacetic acid ester (CPDA) or dodecyl trithiocarbonate (DoPAT) functional poly(alkyl acrylate) at the absorption wavelength of the thiocarbonyl group (315 nm), incorporation of the alkene at the polymer chain-end occurred. The most efficient systems identified with regard to the rate of reaction and yield were poly(butyl acrylate)/CPDA/ethyl vinyl ether (78% monoinsertion product after 1 h) and poly(butyl acrylate)/CPDA/1-pentene (73% insertion product after 7 h) at ambient temperature. An in-depth analysis of the reaction mechanism by 1H NMR and online size-exclusion chromatography-electrospray ionization tandem mass spectrometry (SEC/ESI−MSn) revealed that a possible [2 + 2] photoaddition mechanism of conjugation does not take place. Instead, fast β-cleavage of the photoexcited RAFT-end group with subsequent radical addition of an alkene was observed for all employed systems. The presented reaction thus provides a means of spatial and temporal control for the conjugation of alkenes to thiocarbonyl thio-capped macromolecules via the use of UV radiation.
Resumo:
Poly(styrene)-block-poly(ethylene oxide) copolymers synthesized via the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and hetero Diels–Alder (HDA) cycloaddition can be cleaved in the solid state by a retro-HDA reaction occurring at 90 °C. Nanoporous films can be prepared from these polymers using a simple heating and washing procedure.
Resumo:
We introduce the design of a thermoresponsive nanoparticle via sacrificial micelle formation based on supramolecular host–guest chemistry. Reversible addition–fragmentation chain transfer (RAFT) polymerization was employed to synthesize well-defined polymer blocks of poly(N,N-dimethylacrylamide) (poly(DMAAm)) (Mn,SEC = 10 700 g mol–1, Đ = 1.3) and poly(N-isopropylacrylamide) (poly(NiPAAm)) (Mn,SEC = 39 700 g mol–1, Đ = 1.2), carrying supramolecular recognition units at the chain termini. Further, 2-methoxy-6-methylbenzaldehyde moieties (photoenols, PE) were statistically incorporated into the backbone of the poly(NiPAAm) block as photoactive cross-linking units. Host–guest interactions of adamantane (Ada) (at the terminus of the poly(NiPAAm/PE) chain) and β-cyclodextrin (CD) (attached to the poly(DMAAm chain end) result in a supramolecular diblock copolymer. In aqueous solution, the diblock copolymer undergoes micellization when heated above the lower critical solution temperature (LCST) of the thermoresponsive poly(NiPAAm/PE) chain, forming the core of the micelle. Via the addition of a 4-arm maleimide cross-linker and irradiation with UV light, the micelle is cross-linked in its core via the photoinduced Diels–Alder reaction of maleimide and PE units. The adamantyl–cyclodextrin linkage is subsequently cleaved by the destruction of the β-CD, affording narrowly distributed thermoresponsive nanoparticles with a trigger temperature close to 30 °C. Polymer chain analysis was performed via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and dynamic light scattering (DLS). The size and thermoresponsive behavior of the micelles and nanoparticles were investigated via DLS as well as atomic force microscopy (AFM).
Resumo:
The investigation into the encapsulation of gold nanoparticles (AuNPs) by poly(methyl methacrylate) (PMMA) was undertaken. This was performed by three polymerisation techniques including: grafting PMMA synthesised by reversible addition-fragmentation chain transfer (RAFT) polymerisation to AuNPs, grafting PMMA synthesised by atom transfer radical polymerisation (ATRP) from the surface of functionalised AuNPs and by encapsulation of AuNPs within PMMA latexes produced through photo-initiated oil-in-water (o/w) miniemulsion polymerisation. The grafting of RAFT PMMA to AuNPs was performed by the addition of the RAFT functionalised PMMA to citrate stabilised AuNPs. This was conducted with a range of PMMA of varying molecular weight distribution (MWD) as either the dithioester or thiol end-group functionalities. The RAFT PMMA polymers were characterised by gel permeation chromatography (GPC), ultraviolet-visible (UV-vis), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), Fourier transform Raman (FT-Raman) and proton nuclear magnetic resonance (1H NMR) spectroscopies. The attachment of PMMA to AuNPs showed a tendency for AuNPs to associate with the PMMA structures formed, though significant aggregation occurred. Interestingly, thiol functionalised end-group PMMA showed very little aggregation of AuNPs. The spherical polymer-AuNP structures did not vary in size with variations in PMMA MWD. The PMMA-AuNP structures were characterised using scanning electron microscopy (SEM), transition electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopy. The surface confined ATRP grafting of PMMA from initiator functionalised AuNPs was polymerised in both homogeneous and heterogeneous media. 11,11’- dithiobis[1-(2-bromo-2-methylpropionyloxy)undecane] (DSBr) was used as the surface-confined initiator and was synthesised in a three step procedure from mercaptoundecanol (MUD). All compounds were characterised by 1H NMR, FTIR-ATR and Raman spectroscopies. The grafting in homogeneous media resulted in amorphous PMMA with significant AuNP aggregation. Individually grafted AuNPs were difficult to separate and characterise, though SEM, TEM, EDAX and UV-vis spectroscopy was used. The heterogeneous polymerisation did not produce grafted AuNPs as characterised by SEM and EDAX. The encapsulation of AuNPs within PMMA latexes through the process of photoinitiated miniemulsion polymerisation was successfully achieved. Initially, photoinitiated miniemulsion polymerisation was conducted as a viable low temperature method of miniemulsion initiation. This proved successful producing a stable PMMA with good conversion efficiency and narrow particle size distribution (PSD). This is the first report of such a system. The photo-initiated technique was further optimised and AuNPs were included into the miniemulsion. AuNP encapsulation was very effective, producing reproducible AuNP encapsulated PMMA latexes. Again, this is the first reported case of this. The latexes were characterised by TEM, SEM, GPC, gravimetric analysis and dynamic light scattering (DLS).
Resumo:
This project was a preliminary step towards the development of novel methods for early stage cancer diagnosis and treatment. Diagnostic imaging agents with high Raman signal enhancement were developed based on tailored assemblies of gold nanoparticles, which demonstrated potential for non-invasive detection from deep under the skin surface. Specifically designed polymers were employed to assemble gold nanoparticles into controlled morphologies including dimers, nanochains, nanoplates, globular and core-satellite nanostructures. Our findings suggest that the Raman enhancement is strongly dependent on assembly morphology and can be tuned to adapt to the requirements of the diagnostic agent.
Resumo:
Theranostics offers an improved treatment strategy for prostate cancer by facilitating simultaneous targeting of tumour cells with subsequent drug delivery and imaging. In this report we describe the synthesis of hyperbranched polymers that are biocompatible, can specifically target and be internalised by prostate cancer cells (through targeting of prostate-specific membrane antigen – PSMA) and ultimately facilitate controlled delivery of a model drug. The theranostic also incorporates a far-red fluorescent dye that allows tracking of the polymer via optical imaging. Controlled synthesis of the polymer is achieved via reversible addition fragmentation chain transfer polymerisation of polyethylene glycol monomethyl methacrylate, with ethylene glycol dimethacrylate as the branching agent. Incorporation of 20 mol% of an hydrazide-methacrylate monomer allows post-ligation of a model drug, fluorene-2-carboxaldehyde, through a hydrolytically-degradable hydrazone linkage. The rate of degradation of this particular linker was enhanced at endosomal pH (pH = 5.5) where [similar]95% of the model drug was released in 4 hours compared to less than 5% released over the same period at physiological pH. The theranostic showed high uptake into prostate cancer cells expressing prostate-specific membrane antigen, while minimal uptake was observed in PC3 cells negative for PSMA, highlighting the enhanced efficacy of the targeting ligand.
Resumo:
The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.
Resumo:
Lipopolysaccharide is a major immunogenic structure for the pathogen Yersinia pseudotuberculosis, which contains the O-specific polysaccharide (OPS) that is presented on the cell surface. The OPS contains many repeats of the oligosaccharide O-unit and exhibits a preferred modal chain length that has been shown to be crucial for cell protection in Yersinia. It is well established that the Wzz protein determines the preferred chain length of the OPS, and in its absence, the polymerization of O units by the Wzy polymerase is uncontrolled. However, for Y. pseudotuberculosis, a wzz mutation has never been described. In this study, we examine the effect of Wzz loss in Y. pseudotuberculosis serotype O:2a and compare the lipopolysaccharide chain-length profile to that of Escherichia coli serotype O111. In the absence of Wzz, the lipopolysaccharides of the two species showed significant differences in Wzy polymerization. Yersinia pseudotuberculosis O:2a exhibited only OPS with very short chain lengths, which is atypical of wzz-mutant phenotypes that have been observed for other species. We hypothesise that the Wzy polymerase of Y. pseudotuberculosis O:2a has a unique default activity in the absence of the Wzz, revealing the requirement of Wzz to drive O-unit polymerization to greater lengths.
Resumo:
The crystal structure of the hydrated proton-transfer compound of the drug quinacrine [rac-N'-(6-chloro-2-methoxyacridin-9-yl)-N,N-diethylpentane-1,4-diamine] with 4,5-dichlorophthalic acid, C23H32ClN3O2+ . 2(C8H3Cl2O4-).4H2O (I), has been determined at 200 K. The four labile water molecules of solvation form discrete ...O--H...O--H... hydrogen-bonded chains parallel to the quinacrine side chain, the two N--H groups of which act as hydrogen-bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two-dimensional sheets. Between these sheets there are also weak cation--anion and anion--anion pi-pi aromatic ring interactions. This structure represents only the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X-ray beam due to efflorescence, probably associated with the destruction of the unusual four-membered water chain structures.
Resumo:
The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.
Resumo:
Purpose: In this research we examined, by means of case studies, the mechanisms by which relationships can be managed and by which communication and cooperation can be enhanced in sustainable supply chains. The research was predicated on the contention that the development of a sustainable supply chain depends, in part, on the transfer of knowledge and capabilities from the larger players in the supply chain. Design/Methodology/Approach: The research adopted a triangulated approach in which quantitative data were collected by questionnaire, interviews were conducted to explore and enrich the quantitative data and case studies were undertaken in order to illustrate and validate the findings. Handy‟s (1985) view of organisational culture, Allen & Meyer‟s (1990) concepts of organisational commitment and Van de Ven & Ferry‟s (1980) measures of organisational structuring have been combined into a model to test and explain how collaborative mechanisms can affect supply chain sustainability. Findings: It has been shown that the degree of match and mismatch between organisational culture and structure has an impact on staff‟s commitment level. A sustainable supply chain depends on convergence – that is the match between organisational structuring, organisation culture and organisation commitment. Research Limitations/implications: The study is a proof of concept and three case studies have been used to illustrate the nature of the model developed. Further testing and refinement of the model in practice should be the next step in this research. Practical implications: The concept of relationship management needs to filter down to all levels in the supply chain if participants are to retain commitment and buy-in to the relationship. A sustainable supply chain requires proactive relationship management and the development of an appropriate organisational culture, and trust. By legitimising individuals‟ expectations of the type of culture which is appropriate to their company and empowering employees to address mismatches that may occur a situation can be created whereby the collaborating organisations develop their competences symbiotically and so facilitate a sustainable supply chain. Originality/value: The culture/commitment/structure model developed from three separate strands of management thought has proved to be a powerful tool for analysing collaboration in supply chains and explaining how and why some supply chains are sustainable, and others are not.