81 resultados para Artificial Lift
Resumo:
Aim: In the current climate of medical education, there is an ever-increasing demand for and emphasis on simulation as both a teaching and training tool. The objective of our study was to compare the realism and practicality of a number of artificial blood products that could be used for high-fidelity simulation. Method: A literature and internet search was performed and 15 artificial blood products were identified from a variety of sources. One product was excluded due to its potential toxicity risks. Five observers, blinded to the products, performed two assessments on each product using an evaluation tool with 14 predefined criteria including color, consistency, clotting, and staining potential to manikin skin and clothing. Each criterion was rated using a five-point Likert scale. The products were left for 24 hours, both refrigerated and at room temperature, and then reassessed. Statistical analysis was performed to identify the most suitable products, and both inter- and intra-rater variability were examined. Results: Three products scored consistently well with all five assessors, with one product in particular scoring well in almost every criterion. This highest-rated product had a mean rating of 3.6 of 5.0 (95% posterior Interval 3.4-3.7). Inter-rater variability was minor with average ratings varying from 3.0 to 3.4 between the highest and lowest scorer. Intrarater variability was negligible with good agreement between first and second rating as per weighted kappa scores (K = 0.67). Conclusion: The most realistic and practical form of artificial blood identified was a commercial product called KD151 Flowing Blood Syrup. It was found to be not only realistic in appearance but practical in terms of storage and stain removal.
Resumo:
The common brown leafhopper, Orosius orientalis (Matsumura) (Homoptera: Cicadellidae), previously described as Orosius argentatus (Evans), is an important vector of several viruses and phytoplasmas worldwide. In Australia, phytoplasmas vectored by O. orientalis cause a range of economically important diseases, including legume little leaf (Hutton & Grylls, 1956), tomato big bud (Osmelak, 1986), lucerne witches broom (Helson, 1951), potato purple top wilt (Harding & Teakle, 1985), and Australian lucerne yellows (Pilkington et al., 2004). Orosius orientalis also transmits Tobacco yellow dwarf virus (TYDV; genus Mastrevirus, family Geminiviridae) to beans, causing bean summer death disease (Ballantyne, 1968), and to tobacco, causing tobacco yellow dwarf disease (Hill, 1937, 1941). TYDV has only been recorded in Australia to date. Both diseases result in significant production and quality losses (Ballantyne, 1968; Thomas, 1979; Moran & Rodoni, 1999). Although direct damage caused by leafhopper feeding has been observed, it is relatively minor compared to the losses resulting from disease (P Tr E bicki, unpubl.).
Resumo:
A simple and sensitive spectrophotometric method for the simultaneous determination of acesulfame-K, sodium cyclamate and saccharin sodium sweeteners in foodstuff samples has been researched and developed. This analytical method relies on the different kinetic rates of the analytes in their oxidative reaction with KMnO4 to produce the green manganate product in an alkaline solution. As the kinetic rates of acesulfame-K, sodium cyclamate and saccharin sodium were similar and their kinetic data seriously overlapped, chemometrics methods, such as partial least squares (PLS), principal component regression (PCR) and classical least squares (CLS), were applied to resolve the kinetic data. The results showed that the PLS prediction model performed somewhat better. The proposed method was then applied for the determination of the three sweeteners in foodstuff samples, and the results compared well with those obtained by the reference HPLC method.