925 resultados para Apollo and Dionysus
Resumo:
The controversy on how to interpret the ages of lunar highland breccias has recently been discussed by James [1]. Are the measured ages testimony of true events in lunar history; do they represent the age of the ancient crustal rocks, mixed ages of unequilibrated matrix-phenocryst relationships, or merely thermal events subsequent to the formational event ? It is certain from analyses of terrestrial impact melt breccias that the melt matrix of whole impact melt sheets is isotopically equilibrated due to the extensive mixing process of the early cratering stage [2,3]. It has been shown that isotopic equilibration takes place between impact melt matrix and target rock clasts therein, with the intensity of isotopic exchange depending on the degree of shock metamorphism, thermal metamorphism and the size of the clasts [4]. Therefore, impact melt breccias - if they are relatively clast-poor and mineralogically well studied - can be considered to be the most reliable source for information on the impact history of the lunar highland.
Resumo:
Non Alcoholic Fatty Liver Disease (NAFLD) is a condition that is frequently seen but seldom investigated. Until recently, NAFLD was considered benign, self-limiting and unworthy of further investigation. This opinion is based on retrospective studies with relatively small numbers and scant follow-up of histology data. (1) The prevalence for adults, in the USA is, 30%, and NAFLD is recognized as a common and increasing form of liver disease in the paediatric population (1). Australian data, from New South Wales, suggests the prevalence of NAFLD in “healthy” 15 year olds as being 10%.(2) Non-alcoholic fatty liver disease is a condition where fat progressively invades the liver parenchyma. The degree of infiltration ranges from simple steatosis (fat only) to steatohepatitis (fat and inflammation) steatohepatitis plus fibrosis (fat, inflammation and fibrosis) to cirrhosis (replacement of liver texture by scarred, fibrotic and non functioning tissue).Non-alcoholic fatty liver is diagnosed by exclusion rather than inclusion. None of the currently available diagnostic techniques -liver biopsy, liver function tests (LFT) or Imaging; ultrasound, Computerised tomography (CT) or Magnetic Resonance Imaging (MRI) are specific for non-alcoholic fatty liver. An association exists between NAFLD, Non Alcoholic Steatosis Hepatitis (NASH) and irreversible liver damage, cirrhosis and hepatoma. However, a more pervasive aspect of NAFLD is the association with Metabolic Syndrome. This Syndrome is categorised by increased insulin resistance (IR) and NAFLD is thought to be the hepatic representation. Those with NAFLD have an increased risk of death (3) and it is an independent predictor of atherosclerosis and cardiovascular disease (1). Liver biopsy is considered the gold standard for diagnosis, (4), and grading and staging, of non-alcoholic fatty liver disease. Fatty-liver is diagnosed when there is macrovesicular steatosis with displacement of the nucleus to the edge of the cell and at least 5% of the hepatocytes are seen to contain fat (4).Steatosis represents fat accumulation in liver tissue without inflammation. However, it is only called non-alcoholic fatty liver disease when alcohol - >20gms-30gms per day (5), has been excluded from the diet. Both non-alcoholic and alcoholic fatty liver are identical on histology. (4).LFT’s are indicative, not diagnostic. They indicate that a condition may be present but they are unable to diagnosis what the condition is. When a patient presents with raised fasting blood glucose, low HDL (high density lipoprotein), and elevated fasting triacylglycerols they are likely to have NAFLD. (6) Of the imaging techniques MRI is the least variable and the most reproducible. With CT scanning liver fat content can be semi quantitatively estimated. With increasing hepatic steatosis, liver attenuation values decrease by 1.6 Hounsfield units for every milligram of triglyceride deposited per gram of liver tissue (7). Ultrasound permits early detection of fatty liver, often in the preclinical stages before symptoms are present and serum alterations occur. Earlier, accurate reporting of this condition will allow appropriate intervention resulting in better patient health outcomes. References 1. Chalasami N. Does fat alone cause significant liver disease: It remains unclear whether simple steatosis is truly benign. American Gastroenterological Association Perspectives, February/March 2008 www.gastro.org/wmspage.cfm?parm1=5097 Viewed 20th October, 2008 2. Booth, M. George, J.Denney-Wilson, E: The population prevalence of adverse concentrations with adiposity of liver tests among Australian adolescents. Journal of Paediatrics and Child Health.2008 November 3. Catalano, D, Trovato, GM, Martines, GF, Randazzo, M, Tonzuso, A. Bright liver, body composition and insulin resistance changes with nutritional intervention: a follow-up study .Liver Int.2008; February 1280-9 4. Choudhury, J, Sanysl, A. Clinical aspects of Fatty Liver Disease. Semin in Liver Dis. 2004:24 (4):349-62 5. Dionysus Study Group. Drinking factors as cofactors of risk for alcohol induced liver change. Gut. 1997; 41 845-50 6. Preiss, D, Sattar, N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci.2008; 115 141-50 7. American Gastroenterological Association. Technical review on nonalcoholic fatty liver disease. Gastroenterology.2002; 123: 1705-25
Resumo:
There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.