36 resultados para American Student Union.
Resumo:
Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr(-1)), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr(-1), most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.
Resumo:
Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.
Resumo:
Higher-order spectral analysis is used to detect the presence of secondary and tertiary forced waves associated with the nonlinearity of energetic swell observed in 8- and 13-m water depths. Higher-order spectral analysis techniques are first described and then applied to the field data, followed by a summary of the results.
Resumo:
The multifractal properties of two indices of geomagnetic activity, D st (representative of low latitudes) and a p (representative of the global geomagnetic activity), with the solar X-ray brightness, X l , during the period from 1 March 1995 to 17 June 2003 are examined using multifractal detrended fluctuation analysis (MF-DFA). The h(q) curves of D st and a p in the MF-DFA are similar to each other, but they are different from that of X l , indicating that the scaling properties of X l are different from those of D st and a p . Hence, one should not predict the magnitude of magnetic storms directly from solar X-ray observations. However, a strong relationship exists between the classes of the solar X-ray irradiance (the classes being chosen to separate solar flares of class X-M, class C, and class B or less, including no flares) in hourly measurements and the geomagnetic disturbances (large to moderate, small, or quiet) seen in D st and a p during the active period. Each time series was converted into a symbolic sequence using three classes. The frequency, yielding the measure representations, of the substrings in the symbolic sequences then characterizes the pattern of space weather events. Using the MF-DFA method and traditional multifractal analysis, we calculate the h(q), D(q), and τ (q) curves of the measure representations. The τ (q) curves indicate that the measure representations of these three indices are multifractal. On the basis of this three-class clustering, we find that the h(q), D(q), and τ (q) curves of the measure representations of these three indices are similar to each other for positive values of q. Hence, a positive flare storm class dependence is reflected in the scaling exponents h(q) in the MF-DFA and the multifractal exponents D(q) and τ (q). This finding indicates that the use of the solar flare classes could improve the prediction of the D st classes.
Resumo:
The volcanic succession on Montserrat provides an opportunity to examine the magmatic evolution of island arc volcanism over a ∼2.5 Ma period, extending from the andesites of the Silver Hills center, to the currently active Soufrière Hills volcano (February 2010). Here we present high-precision double-spike Pb isotope data, combined with trace element and Sr-Nd isotope data throughout this period of Montserrat's volcanic evolution. We demonstrate that each volcanic center; South Soufrière Hills, Soufrière Hills, Centre Hills and Silver Hills, can be clearly discriminated using trace element and isotopic parameters. Variations in these parameters suggest there have been systematic and episodic changes in the subduction input. The SSH center, in particular, has a greater slab fluid signature, as indicated by low Ce/Pb, but less sediment addition than the other volcanic centers, which have higher Th/Ce. Pb isotope data from Montserrat fall along two trends, the Silver Hills, Centre Hills and Soufrière Hills lie on a general trend of the Lesser Antilles volcanics, whereas SSH volcanics define a separate trend. The Soufrière Hills and SSH volcanic centers were erupted at approximately the same time, but retain distinctive isotopic signatures, suggesting that the SSH magmas have a different source to the other volcanic centers. We hypothesize that this rapid magmatic source change is controlled by the regional transtensional regime, which allowed the SSH magma to be extracted from a shallower source. The Pb isotopes indicate an interplay between subduction derived components and a MORB-like mantle wedge influenced by a Galapagos plume-like source.
Resumo:
This contribution provides an analysis of the 1995–2009 eruptive period of Soufrière Hills volcano (Montserrat) from a unique offshore perspective. The methodology is based on five repeated swath bathymetric surveys. The difference between the 2009 and 1999 bathymetry suggests that at least 395 Mm3 of material has entered the sea. This proximal deposit reaches 95 m thick and extends ∼7km from shore. However, the difference map does not include either the finer distal part of the submarine deposit or the submarine part of the delta close to the shoreline. We took both contributions into account by using additional information such as that from marine sediment cores. By March 2009, at least 65% of the material erupted throughout the eruption has been deposited into the sea. This work provides an excellent basis for assessing the future activity of the Soufrière Hills volcano (including potential collapse), and other volcanoes on small islands.
Resumo:
During a major flood event, the inundation of urban environments leads to some complicated flow motion most often associated with significant sediment fluxes. In the present study, a series of field measurements were conducted in an inundated section of the City of Brisbane (Australia) about the peak of a major flood in January 2011. Some experiments were performed to use ADV backscatter amplitude as a surrogate estimate of the suspended sediment concentration (SSC) during the flood event. The flood water deposit samples were predominantly silty material with a median particle size about 25 μm and they exhibited a non-Newtonian behavior under rheological testing. In the inundated urban environment during the flood, estimates of suspended sediment concentration presented a general trend with increasing SSC for decreasing water depth. The suspended sediment flux data showed some substantial sediment flux amplitudes consistent with the murky appearance of floodwaters. Altogether the results highlighted the large suspended sediment loads and fluctuations in the inundated urban setting associated possibly with a non-Newtonian behavior. During the receding flood, some unusual long-period oscillations were observed (periods about 18 min), although the cause of these oscillations remains unknown. The field deployment was conducted in challenging conditions highlighting a number of practical issues during a natural disaster.