460 resultados para ADSORBED WATER


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bayer hydrotalcites prepared using the seawater neutralisation (SWN) process of Bayer liquors are characterised using X-ray diffraction and thermal analysis techniques. The Bayer hydrotalcites are synthesised at four different temperatures (0, 25, 55, 75 °C) to determine the effect on the thermal stability of the hydrotalcite structure, and to identify other precipitates that form at these temperatures. The interlayer distance increased with increasing synthesis temperature, up to 55 °C, and then decreased by 0.14 Å for Bayer hydrotalcites prepared at 75 °C. The three mineralogical phases identified in this investigation are; 1) Bayer hydrotalcite, 2), calcium carbonate species, and 3) hydromagnesite. The DTG curve can be separated into four decomposition steps; 1) the removal of adsorbed water and free interlayer water in hydrotalcite (30 – 230 °C), 2) the dehydroxylation of hydrotalcite and the decarbonation of hydrotalcite (250 – 400 °C), 3) the decarbonation of hydromagnesite (400 – 550 °C), and 4) the decarbonation of aragonite (550 – 650 °C).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kaolinite-like phyllosilicate minerals bismutoferrite BiFe3+2Si2O8(OH) and chapmanite SbFe3+2Si2O8(OH) have been studied by Raman spectroscopy and complemented with infrared spectra. Tentatively interpreted spectra were related to their molecular structure. The antisymmetric and symmetric stretching vibrations of the Si-O-Si bridges,  SiOSi and  OSiO bending vibrations,  (Si-Oterminal)- stretching vibrations,  OH stretching vibrations of hydroxyl ions, and  OH bending vibrations were attributed to observed bands. Infrared bands 3289-3470 cm-1 and Raman bands 1590-1667 cm-1 were assigned to adsorbed water. O-H...O hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineral geminite, an hydrated hydroxy-arsenate mineral of formula Cu(AsO3OH)•H2O, has been studied by Raman and infrared spectroscopy. Two minerals from different origins were investigated and the spectra proved quite similar. In the Raman spectra of geminite, four bands are observed at 813, 843, 853 and 885 cm-1. The assignment of these bands is as follows: (a) The band at 853 cm-1 is assigned to the AsO43- ν1 symmetric stretching mode (b) the band at 885 cm-1 is assigned to the AsO3OH2- ν1 symmetric stretching mode (c) the band at 843 cm-1 is assigned to the AsO43- ν3 antisymmetric stretching mode (d) the band at 813 cm-1 is ascribed to the AsO3OH2- ν3 antisymmetric stretching mode. Two Raman bands at 333 and 345 cm-1 are attributed to the ν2 AsO4 3- bending mode and a set of higher wavenumber bands are assigned to the ν4 AsO43- bending mode. A very complex set of overlapping bands is observed in both the Raman and infrared spectra. Raman bands are observed at 2288, 2438, 2814, 3152, 3314, 3448 and 3521 cm-1. Two Raman bands at 2288 and 2438 cm-1 are ascribed to very strongly hydrogen bonded water. The broader Raman bands at 3152 and 3314 cm-1 may be assigned to adsorbed water and not so strongly hydrogen bonded water in the molecular structure of geminate. Two bands at 3448 and 3521 cm-1 are assigned to the OH stretching vibrations of the (AsO3OH)2- units. Raman spectroscopy identified Raman bands attributable to AsO43- and AsO3OH2- units.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration was completed by 300 °C and partial dehydroxylation by 350 °C. The inner hydroxyl group remained until around 500 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineral dussertite, a hydroxy-arsenate mineral of formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman complimented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved quite similar, although some minor differences were observed. In the Raman spectra of Czech dussertite, four bands are observed in the 800 to 950 cm-1 region. The bands are assigned as follows: the band at 902 cm-1 is assigned to the (AsO4)3- ν3 antisymmetric stretching mode, at 870 cm-1 to the (AsO4)3- ν1 symmetric stretching mode, and both at 859 cm-1 and 825 cm-1 to the As-OM2+/3+ stretching modes/and or hydroxyls bending modes. Raman bands at 372 and 409 cm-1 are attributed to the ν2 (AsO4)3- bending mode and the two bands at 429 and 474 cm-1 are assigned to the ν4 (AsO4)3- bending mode. An intense band at 3446 cm-1 in the infrared spectrum and a complex set of bands centred upon 3453 cm-1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen bonded (OH)- units and/or water units in the mineral structure. The broad infrared band at 3223 cm-1 is assigned to the vibrations of hydrogen bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3- and (AsO3OH)2- units.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal behavior and decomposition of kaolinite-potassium acetate intercalation complex was investigated through a combination of thermogravimetric analysis and infrared emission spectroscopy. Three main changes were observed at 48, 280, 323 and 460 °C which were attributed to (a) the loss of adsorbed water (b) loss of the water coordinated to acetate ion in the layer of kaolinite (c) loss of potassium acetate in the complex and (d) water through dehydroxylation. It is proposed that the KAc intercalation complex is stability except heating at above 300 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the kaolinite intercalation complex when the temperature is raised. The dehydration of the intercalation complex is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration is completed by 400 °C and partial dehydroxylation by 650 °C. The inner hydroxyl group remained until around 700 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infrared spectra are reported of methyl formate and formaldehyde adsorbed at 300 K on silica, Cu/SiO2 reduced in hydrogen and Cu/SiO2 which had been oxidised by exposure to nitrous oxide after reduction. Silanol groups on silica form hydrogen bonds with carbonyl groups in weakly adsorbed methyl formate molecules. Methyl formate ligates via its carbonyl groups to Cu atoms in the surface of reduced copper. A low residual concentration of surface oxygen on copper promoted the slow reaction of ligated methyl formate to give a bridging formate species on copper and adsorbed methoxy groups. Methyl formate did not ligate to an oxidised copper surface but was rapidly chemisorbed to give unidentate formate and methoxy species. Formaldehyde slowly polymerises on silica to form trioxane and other oxymethylene species. The reaction is faster over Cu/SiO2 which, in the reduced state, also catalyses the formation of bridging formate anions adsorbed on copper. The reaction between formaldehyde and oxidised Cu/SiO2 leads to both unidentate and bidentate formate and adsorbed water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM/EDS) and X-ray diffraction (XRD) were used to characterize the morphology of synthetic goethite. The behavior of the hydroxyl/water molecular units of goethite and its thermally treated products were characterized using Fourier transform-infrared emission spectroscopy (FT-IES) and attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy. The results showed that all the expected vibrational bands between 4000 and 650 cm−1 including the resolved bands (3800–2200 cm−1) were confirmed. A band attributed to a new type of hydroxyl unit was found at 3708 cm−1 and assigned to the FeO–H stretching vibration without hydrogen bonding. This hydroxyl unit was retained up to the thermal treatment temperature of 500 °C. On the whole, seven kinds of hydroxyl units, involving three surface hydroxyls, a bulk hydroxyl, a FeO–H without hydrogen bonding, a nonstoichiometric hydroxyl and a reversed hydroxyl were observed, and three kinds of adsorbed water were found in/on goethite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have used a combination of scanning electron microscopy with EDX and vibrational spectroscopy to study the mineral ardennite-(As). The mineral ardennite-(As) of accepted formula Mn2þ 4 (Al,Mg)6(Si3O10)(SiO4)2(AsO4,VO4)(OH)6 is a silicate mineral which may contain arsenate and/or vanadates anions. Because of the oxyanions present, the mineral lends itself to analysis by Raman and infrared spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by Si, Mn, Al and As. Ca and V were also observed in partial substitution for Mn and As. Raman bands at 1197, 1225, 1287 and 1394 cm-1 are assigned to SiO stretching vibrations. The strong Raman bands at 779 and 877 cm-1 are assigned to the AsO3- 4 antisymmetric and symmetric stretching vibrations. The Raman band at 352 cm-1 is assigned to the m2 symmetric bending vibration. The series of Raman bands between 414 and 471 cm-1 are assigned to the m4 out of plane bending modes of the AsO3-4 units. Intense Raman bands observed at 301 and 314 cm-1 are attributed to the MnO stretching and bending vibrations. Raman bands at 3041, 3149, 3211 and 3298 cm-1 are attributed to the stretching vibrations of OH units. There is vibrational spectroscopic evidence for the presence of water adsorbed on the ardennite-(As) surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surfaces of natural beidellite clay were modified with cationic surfactant, tetradecyltrimethylammonium bromide, at different concentrations. The organo-beidellites were analysed using thermogravimetric analysis which shows four thermal oxidation/decomposition steps. The first step of mass loss is observed from room temperature to 130 °C due to the dehydration of adsorbed water. The second step of mass loss between 130 and 400 °C is attributed to the oxidation step of the intercalated organic surfactant with the formation of charcoal. The third mass loss happens between 400 and 500 °C which is assigned to the loss of hydroxyl groups on the edge of clays and the further oxidation step of charcoal. The fourth step is ascribed to the loss of structural OH units as well as the final oxidation/decomposition step of charcoal which takes place between 500 and 700 °C. Thermogravimetric analysis has proven to be a useful tool for estimating loaded surfactant amount.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of stearic acid on both sodium montmorillonites and calcium montmorillonites has been studied by near infrared spectroscopy complimented with infrared spectroscopy. Upon adsorption of stearic acid on Ca-Mt additional near infrared bands are observed at 8236 cm-1 and is assigned to an interaction of stearic acid with the water of hydration. Upon adsorption of the stearic acid on Na-Mt, the NIR bands are now observed at 5671, 5778, 5848 and 5912 cm-1 and are assigned to the overtone and combination bands of the CH fundamentals. Additional bands at 4177, 4250, 4324, 4337, 4689 and 4809 cm-1 are attributed to CH combination bands resulting from the adsorption of the stearic acid. Stearic acid is used as a model molecule for adsorption studies. The application of near infrared spectroscopy to the study of this adsorption proved most useful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of benzoic acid on both sodium and calcium montmorillonites has been studied by near infrared spectroscopy complimented with infrared spectroscopy. Upon adsorption of benzoic acid additional near infrared bands are observed at 8665 cm-1 and assigned to an interaction of benzoic acid with the water of hydration. Upon adsorption of the benzoic acid on Na-Mt, the NIR bands are now observed at 5877, 5951, 6028 and 6128 cm-1 and are assigned to the overtone and combination bands of the CH fundamentals. Additional bands at 4074, 4205, 4654 and 4678 cm-1 are attributed to CH combination bands resulting from the adsorption of the benzoic acid. Benzoic acid is used as a model molecule for adsorption studies. The application of near infrared spectroscopy to the study of adsorption has the potential for the removal of acids from polluted aqueous systems.