953 resultados para ABC model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indirect inference (II) is a methodology for estimating the parameters of an intractable (generative) model on the basis of an alternative parametric (auxiliary) model that is both analytically and computationally easier to deal with. Such an approach has been well explored in the classical literature but has received substantially less attention in the Bayesian paradigm. The purpose of this paper is to compare and contrast a collection of what we call parametric Bayesian indirect inference (pBII) methods. One class of pBII methods uses approximate Bayesian computation (referred to here as ABC II) where the summary statistic is formed on the basis of the auxiliary model, using ideas from II. Another approach proposed in the literature, referred to here as parametric Bayesian indirect likelihood (pBIL), we show to be a fundamentally different approach to ABC II. We devise new theoretical results for pBIL to give extra insights into its behaviour and also its differences with ABC II. Furthermore, we examine in more detail the assumptions required to use each pBII method. The results, insights and comparisons developed in this paper are illustrated on simple examples and two other substantive applications. The first of the substantive examples involves performing inference for complex quantile distributions based on simulated data while the second is for estimating the parameters of a trivariate stochastic process describing the evolution of macroparasites within a host based on real data. We create a novel framework called Bayesian indirect likelihood (BIL) which encompasses pBII as well as general ABC methods so that the connections between the methods can be established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As media institutions are encouraged to explore new production methodologies in the current economic crisis, they align with Schumpeter’s creative destruction provocation by exhibiting user-led political, organisation and socio-technical innovations. This paper highlights the significance of the cultural intermediary within the innovative, co-creative production arrangements for cultural artefacts by media professionals in institutional online communities. An institutional online community is defined as one that is housed, resourced and governed by commercial or non- commercial institutions and is not independently facilitated. Web 2.0 technologies have mobilised collaborative peer production activities for online content creation and professional media institutions face challenges in engaging participatory audiences in practices that are beneficial for all concerned stakeholders. The interests of those stakeholders often do not align, highlighting the need for an intermediary role that understands and translates the norms, rhetoric tropes and day-to-day activities between the individuals engaging in participatory communication activities for successful negotiation within the production process. This paper specifically explores the participatory relationship between the public service broadcaster (PSB), the Australian Broadcasting Corporation (ABC) and one of its online communities, ABC Pool (www.abc.net.au/pool). ABC Pool is an online platform developed and resourced by the ABC to encourage co-creation between audience members engaging in the production of user-generated content (UGC) and the professional producers housed within the ABC Radio Division. This empirical research emerges from a three-year research project where I employed an ethnographic action research methodology and was embedded at the ABC as the community manager of ABC Pool. In participatory communication environments, users favour meritocratic heterarchical governance over traditional institutional hierarchical systems (Malaby 2009). A reputation environment based on meritocracy requires an intermediary to identify the stakeholders, understand their interests and communicate effectively between them to negotiate successful production outcomes (Bruns 2008; Banks 2009). The community manager generally occupies this role, however it has emerged that other institutional production environments also employ an intermediary role under alternative monikers(Hutchinson 2012). A useful umbrella term to encompass the myriad of roles within this space is the cultural intermediary. The ABC has experimented with three institutional online community governance models that engage in cultural intermediation in differing decentralised capacities. The first and most closed is a single point of contact model where one cultural intermediary controls all of the communication of the participatory project. The second is a model of multiple cultural intermediaries engaging in communication between the institutional online community stakeholders simultaneously. The third is most open yet problematic as it promotes and empowers community participants to the level of cultural intermediaries. This paper uses the ABC Pool case study to highlight the differing levels of openness within cultural intermediation during the co-creative production process of a cultural artifact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms using indirect infer- ence. We embed this approach within a sequential Monte Carlo algorithm that is completely adaptive. This methodological development was motivated by an application involving data on macroparasite population evolution modelled with a trivariate Markov process. The main objective of the analysis is to compare inferences on the Markov process when considering two di®erent indirect mod- els. The two indirect models are based on a Beta-Binomial model and a three component mixture of Binomials, with the former providing a better ¯t to the observed data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytically or computationally intractable likelihood functions can arise in complex statistical inferential problems making them inaccessible to standard Bayesian inferential methods. Approximate Bayesian computation (ABC) methods address such inferential problems by replacing direct likelihood evaluations with repeated sampling from the model. ABC methods have been predominantly applied to parameter estimation problems and less to model choice problems due to the added difficulty of handling multiple model spaces. The ABC algorithm proposed here addresses model choice problems by extending Fearnhead and Prangle (2012, Journal of the Royal Statistical Society, Series B 74, 1–28) where the posterior mean of the model parameters estimated through regression formed the summary statistics used in the discrepancy measure. An additional stepwise multinomial logistic regression is performed on the model indicator variable in the regression step and the estimated model probabilities are incorporated into the set of summary statistics for model choice purposes. A reversible jump Markov chain Monte Carlo step is also included in the algorithm to increase model diversity for thorough exploration of the model space. This algorithm was applied to a validating example to demonstrate the robustness of the algorithm across a wide range of true model probabilities. Its subsequent use in three pathogen transmission examples of varying complexity illustrates the utility of the algorithm in inferring preference of particular transmission models for the pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Bayesian framework a standard approach to model criticism is to compare some function of the observed data to a reference predictive distribution. The result of the comparison can be summarized in the form of a p-value, and it's well known that computation of some kinds of Bayesian predictive p-values can be challenging. The use of regression adjustment approximate Bayesian computation (ABC) methods is explored for this task. Two problems are considered. The first is the calibration of posterior predictive p-values so that they are uniformly distributed under some reference distribution for the data. Computation is difficult because the calibration process requires repeated approximation of the posterior for different data sets under the reference distribution. The second problem considered is approximation of distributions of prior predictive p-values for the purpose of choosing weakly informative priors in the case where the model checking statistic is expensive to compute. Here the computation is difficult because of the need to repeatedly sample from a prior predictive distribution for different values of a prior hyperparameter. In both these problems we argue that high accuracy in the computations is not required, which makes fast approximations such as regression adjustment ABC very useful. We illustrate our methods with several samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.